

Universidade Federal do Rio de Janeiro

Escola Politécnica

Departamento de Eletrônica e de Computação

Embedded Software for Pedestrian Detection using the
Raspberry Pi

Author:

Caio Christóvão da Silva Porto

Advisor:

Prof. Carlos José Ribas d'Avila, M. Sc.

Examiner:

Prof. Aloysio de Castro Pinto Pedroza, D. Sc.

Examiner:

Prof. Heraldo Luís Silveira de Almeida, D. Sc.

DEL

March 2014

ii

Dedication

 To my parents, siblings and grandparents.

iii

Acknowledgement
To my parents, siblings and grandparents who helped me and guided me

through my education.

 To Professor Carlos José Ribas d'Avila for helping me achieve my

professional objectives and believing in my work.

 To professors Aloysio de Castro Pinto Pedroza and Heraldo Luís Silveira de

Almeida for accepting to participate as examiners.

 To Professor Katia Obraczka for welcoming me in her laboratory and giving

me the opportunity to work with her.

 To Kevin Abas for working with me in this project and helping I while in UC

Santa Cruz.

 To my friends Oliver von Behr Kuster, Felippe Kern Noel and Rafael

Rodriguez Martinho for the friendship and fun shared with me through these years of

undergraduate education.

iv

Abstract of Undergraduate Project presented to POLI/UFRJ as partial fulfillment of

the requirements for the degree of Electronics and Computer Engineer.

Embedded Software for Pedestrian Detection Using the Raspberry Pi

Caio Christóvão da Silva Porto

March/2014

Advisor: Carlos José Ribas d'Avila

Course: Electronics and Computer Engineering

Nowadays surveillance cameras are composed of a simple hardware responsible for

the capture and upload of images to servers.

This project aims the creation of an embedded software capable of processing and

analyzing the captured images within the node itself, and then decides if it should be

recorded for later upload.

In this document is described the implementation of an embedded software used for

the pedestrians detection.

Keywords: Raspberry Pi, Surveillance, OpenCV, Object Detection.

v

Sumary
Dedication .. ii

Acknowledgement ... iii

Abstract ... iv

Figure List .. vii

Chart List ... viii

Abbreviation List .. ix

Chapter 1 - Introduction ... 1

1.1 – Chapters Contents .. 1

1.2 - Theme .. 1

1.3 - Objectives .. 1

1.4 - Justification .. 1

1.5 - Constraints ... 2

1.6 – Description .. 2

Chapter 2 – Object Detection Techniques ... 3

2.1 – Haar-like Features ... 3

2.2 – Histogram of Oriented Gradients .. 4

2.3 - Background Subtraction... 5

2.3.1 – Frame Differencing ... 5

2.3.2 – Mean Filter ... 6

2.3.3 – Mixture of Gaussians .. 7

Chapter 3: Hardware .. 8

3.1 – Raspberry Pi .. 8

3.1.1 – Specifications.. 8

3.2 – Camera Module ... 9

3.2.1 – Specifications.. 10

3.2.2 – API .. 11

vi

Chapter 4 – Project Detailing ... 12

4.1 – Block Diagram .. 12

4.2 – Solution ... 13

Chapter 5 – Starting Configurations .. 14

5.1 – Camera .. 14

5.2 – Video Recording ... 15

Chapter 6 – Detection and Logic ... 16

6.1 – Pedestrian Detection .. 16

6.2 – Storage and Power Control ... 19

Chapter 7 – Results .. 20

Chapter 8 – Conclusion and Future Works .. 22

References .. 23

Apendix 1 - Pedestrian Detection Program ... 25

vii

Figure List

Figure 1 - Feature types used by Viola and Jones. .. 3

Figure 2 - Example of the average gradient image after training. 4

Figure 3 - Frame Differencing diagram. .. 5

Figure 4 - Raspberry Pi board. ... 8

Figure 5 - Camera module. .. 10

Figure 6 - Software architecture blocks diagram. .. 12

Figure 7 - Object moving in four consecutive frames. .. 20

Figure 8 - Detection errors that can generate false alarms: (a) Object occlusion, (b)

reflex, (c) low contrast and (d) shape changes. .. 20

viii

Chart List
Table 1 - Results example for a Mean Filter algorithm for different N. 6

Table 2 - Raspberry Pi specifications. ... 9

Table 3 - Camera parameters and values. .. 11

Table 4 - Function set_camera_parameters description. .. 14

Table 5 - Camera configuration values. ... 14

Table 6 - Description of the open function .. 15

Table 7 - Description of the OpenCV used functions. ... 17

ix

Abbreviation List

UFRJ – Universidade Federal do Rio de Janeiro

API – Application Programming Interface

PIR – Passive Infrared Sensor

1

Chapter 1 - Introduction

1.1 – Chapters Contents

 In the chapter 1, the proposed problem is studied to be solved in this Project.

The chapter 2 regards to the study of techniques for object detection. While in the

chapters 3, the study is focused on the description of the hardware and its API.

 Starting on chapter 4, the project description and the solutions adopted are

shown. In the chapter 5, the implementation of the camera and video configuration is

presented. Whereas in chapter 6, the implementation of the pedestrian detection and

the video record logic are shown.

 The chapter 7 shows the results obtained after the tests and, at last, in the

chapter 8, the conclusions and the future works are presented.

1.2 - Theme

The theme of this work is the development of an embedded system, using the

Raspberry Pi minicomputer, which will be capable of detect pedestrians using a

camera module and make decisions.

1.3 - Objectives

 The main objective is to develop an embedded system capable of

preprocessing images, captured by the camera module, to detect pedestrians on a

scene. Furthermore, the system should be able to characterize the video in order to

define if it is relevant to save it and, later, upload to the server.

1.4 - Justification

Surveillance cameras with low energy consumption, up until now, use

movement detection sensors to know when it is necessary its activation. Even though,

the use of this kind of system in some environments generates large amounts of false

alarms, due to animals and plants in most of the cases.

2

1.5 - Constraints

For this type of systems, we have, as constraint, the utilization of the

minicomputer Raspberry Pi and its camera module due to the low energy

consumption and the low cost. Furthermore, the system must analyses the images in a

fast and optimized way, with the goal of save energy and keep an acceptable video

quality. It is important to mention that the camera should be able to be deployed in

different types of scenarios with the need of minimum or none calibration.

1.6 – Description

 The Project is constituted of a Raspberry Pi and its camera module, assuming

the functionality of surveillance camera. It will use a very lightweight Linux

distribution, a Raspberry Pi Arch Linux version, as the embedded operating system

for compilation and execution of image processing programs.

 The main program will be implemented in C++, regarding the constraints of

the OpenCV (Open Source Computer Vision Library) and the Raspiberry Pi camera

module API. The public API for the camera is currently implemented in C and most

of the OpenCV functions are only implemented in C++ and Python.

 The program will be divided in two main sections: image capturing and image

processing. The first is a loop responsible for configuring the camera parameters for

better performance of the image processing algorithms and for the continuous image

capture. The second is responsible for processing each image captured, looking for

pedestrians and recording the images following the defined power and storage save

rules.

3

Chapter 2 – Object Detection Techniques
 In this chapter a study is made of the most popular types of object detection

methods, showing its advantages and disadvantages. The objective here is to find the

best solution that fits the needs and the constraints of the system.

2.1 – Haar-like Features

The Haar-like Features [1] technique was the first to provide object detection

with real-time rates. Given an image, a bounding box is applied to the target object,

which is called “detection window”. A Haar-like feature considers adjacent

rectangular regions at a specific location in a detection window, sums up the pixel

intensities in each region and calculates the difference between these sums. This

difference is then used to categorize subsections of an image. As shown in Figure 1,

Viola and Jones have four different types of features for better coverage of horizontal

and vertical features.

Because such a Haar-like feature is only a weak learner or classifier, a large

number of Haar-like features are necessary to describe an object with sufficient

accuracy. Therefore, Viola and Jones features are organized in a classifier cascade.

The key advantage of a Haar-like feature over most other features is its

calculation speed. Due to the use of integral images [2], a Haar-like feature of any

size can be calculated in constant time. On the other hand, this type of object

detection technique will not be helpful for this project, since a lot of training is

required for a good result and this project focus on the flexibility of positioning the

cameras in different scenarios with minimal calibration.

Figure 1 - Feature types used by Viola and Jones.

4

2.2 – Histogram of Oriented Gradients

The HOG [3] are feature descriptors that represent the intensity gradient or

edge orientation in localized portions of an image. These descriptors are sufficient to

describe the objects appearance and shape. The implementation is done by dividing

the image into small regions, called “cells”, and for each cell is calculated the

histogram of gradient directions or edge orientations for the pixels of the cell. The

representation of the descriptor is the combination of the histograms, Figure 2.

The biggest advantage of the HOG is that it supports invariance to geometric

and photometric transformations: translations or rotations. Such changes make little

difference if they are much smaller than the local spatial or orientation size. In

addition, as Dalal and Triggs discovered, coarse spatial sampling, fine orientation

sampling, and strong local photometric normalization permits the individual body

segmentations to change their appearance and be ignored as long as they maintain a

roughly upright position. The HOG thus fits perfectly for human detection.

After testing the HOG algorithm implementation and searching about its

performance, it was possible to conclude that it is not suitable for our platform. Using

the method for full body detection, it was obtained an approximately 1 frame per

minute processing speed. This result is due to the hardware constraint and the

complexity of the algorithm that even in modern processor is only able to achieve

14fps using a low-resolution image (640 x 480). Besides the processing speed, this

method of object detection requires training as it is based on features description.

Figure 2 - Example of the average gradient image after training.

5

2.3 - Background Subtraction

 The Background Subtraction, also called Foreground Detection, is a technique

used for extraction of the foreground image. It is a widely used method for object

detection in videos from static cameras. This approach detects moving objects from

the difference between the current frame and a reference frame called “background

model”.

2.3.1 – Frame Differencing

In the Frame Differencing technique, it is done a subtraction between the

current frame (t + 1) and the previous frame (t). As we can see, it is assumed that the

background is the previous frame.

��� + 1� = |	�
, �, � + 1� − 	�
, �, ��|

 To improve the subtraction and remove image noise, a threshold Th is

inserted.

|	�
, �, �� − 	�
, �, � + 1�| > �ℎ

The advantage is that this approach is very quick to adapt to changes in

lighting or camera motion. On the other hand, if an object stops it is no long detected

and only a small portion of the objects’’ pixels is detected, Figure 3.

Figure 3 - Frame Differencing diagram.

6

2.3.2 – Mean Filter

The Mean Filter is very similar to the frame differencing, but this time, to

improve the background image it is done an average of N the previous images. We

assume that the background is more likely to appear in a scene.

��
, �� = 1
��	�
, �, � − 1�

�

���

 This average corresponds to averaging the corresponding pixel for all the N

images. Then, again, a threshold is applied to reduce the subtraction noise:

|	(
, �, �) − �(
, �)| > �ℎ

Table 1 - Results example for a Mean Filter algorithm for different N.

N Background Model Foreground Mask

1

0

2

0

5

0

7

2.3.3 – Mixture of Gaussians

 The MoG is a type of adaptive background method first implemented by

Stauffer and Grimson [5] with many improvements later. It is assumed that every

pixel’s intensity values in the video can be modeled using a mixture of Gaussians

model. At each interaction, Gaussians are evaluated using a simple heuristic to

determine which ones are mostly like to correspond to the background. Pixels that do

not match with the background Gaussians are classified as foreground. Then, the

foreground pixels are grouped using 2D connected component analysis.

 This method has a “threshold” for each pixel and these “thresholds” are

adapting by time, what can improve the noise reduction considerably when compared

to the previous shown methods. Another big advantage is that this method, despite of

the mathematical complexity for humans, have a good performance even in low-end

hardware, like the Raspberry Pi (up to 3 fps @ 426 x 240).

8

Chapter 3: Hardware

3.1 – Raspberry Pi

 The Raspberry Pi (Figure 4) is a credit-card-sized single-board computer

developed in the UK by the Raspberry Pi Foundation with the intention of promoting

the teaching of basic computer science in schools. The first reports of arrival was on

April of 2012, and currently it has already been shipped more than 2 million units

worldwide for all type of consumers.

Figure 4 - Raspberry Pi board.

3.1.1 – Specifications

 The Raspberry Pi specifications are shown on the Table 2. We can see that its

power consumption and processor speed are relatively low if compared to a regular

computer. The power consumption and its popularity were my main reasons for

picking up this hardware.

9

Table 2 - Raspberry Pi specifications.

Price US$ 35

Soc Broadcom BCM2835 (CPU, GPU, DSP, SDRAM, and single

USB port)

GPU 700 MHz ARM1176JZF-S core (ARM11 family, ARMv6

instruction set)

Memory Broadcom VideoCore IV @ 250 MHz

OpenGL ES 2.0 (24 GFLOPS)

MPEG-2 and VC-1 (with license), 1080p30 h.264/MPEG-4

AVC high-profile decoder and encoder

USB 2.0 Ports 2

Video input A CSI input connector for the camera module

Video outputs Composite RCA (PAL and NTSC), HDMI (rev 1.3 & 1.4), raw

LCD Panels via DSI 14 HDMI resolutions from 640×350 to

1920×1200 plus various PAL and NTSC standards.

Audio outputs 3.5 mm jack, HDMI, and, as of revision 2 boards, I²S audio

Onboard storage SD / MMC / SDIO card slot

Onboard

network

10/100Mbps Ethernet

Low-level

peripherals

8 × GPIO, UART, I²C bus, SPI bus with two chip selects, I²S

audio, +3.3 V, +5 V, ground

Power ratings 700 mA (3.5 W)

Power source 5 volt via MicroUSB or GPIO header

Size 85.60 mm × 53.98 mm

Weight 45g

3.2 – Camera Module

 The Raspberry Pi camera module board (Figure 5) was recently launched on

May 2013 allowing the use of the Raspberry Pi for real-time video processing

purposes. With the module, two new programs were introduced to help the interaction

with this new module: Raspistill and Raspivid. The first one is dedicated to static

images, while the second one to record videos.

10

 The lack of documentation and developer friendly architecture gave a lot of

work to the pioneers. The first step of all the developers was to try to understand the

bad documented source code and then create their own modifications.

In this chapter, it will describe and explain the existing library for

communication with the camera module board. The results of my research presented

here are focused on the use of the camera to capture static images.

Figure 5 - Camera module.

3.2.1 – Specifications

 The Raspberry Pi Camera Board features a 5MP (2592×1944 pixels)

Omnivision 5647 sensor [6] in a fixed focus module. The module attaches to

Raspberry Pi, by way of a 15 Pin Ribbon Cable, to the dedicated 15-pin MIPI Camera

Serial Interface (CSI), which was designed especially for interfacing to cameras. The

CSI bus is capable of extremely high data rates, and it exclusively carries pixel data to

the BCM2835 processor.

• Still Pictures Resolution – 2592 x 1944

• Video Resolution – 1080p @ 30fps, 720p @ 60fps and VGA @ 60/90fps

• Size – 20 x 25 x 9mm

• Weight – 30g

• Price - US$ 29.00

11

3.2.2 – API

 The two applications released with the camera were based on the mmal API,

which runs over OpenMAX. The mmal API provides an easier way to communicate

with the hardware than the OpenMAX and it was developed by Broadcom to use

specifically with this camera model.

Table 3 - Camera parameters and values.

Parameter Values

Sharpness -100 to 100

Contrast -100 to 100

Brightness 0 to 100

Saturation -100 to 100

Video Stabilization 0 or 1

Exposure Compensation -10 to 10

Rotation 0 to 359

Horizontal Flip 0 or 1

Vertical Flip 0 or 1

Exposure Mode Off, Auto, Night, Backlight, Spotlight, Sports,

Snow, Beach, Very Long, Fixed fps, Anti Shake,

Fireworks

Exposure Metering Mode Average, Spot, Backlit, Matrix

Auto White Balance Mode Off, Auto, Sunlight, Cloudy, Shade, Tungsten,

Fluorescent, Incandescent, Flash, Horizon

Image Effect None, Negative, Solarize, Posterize, Whiteboard,

Blackboard, Sketch, Denoise, Emboss, Oil paint,

Hatch, Gpen, Pastel, Water Color, Film, Blur,

Saturation, Color Swap, Washed Out, Posterise,

Color Point, Color Balance, Cartoon

Color Effect – Chrominance 16 to 240

12

Chapter 4 – Project Detailing

4.1 – Block Diagram

 The block diagram on Figure 4 illustrate the software architecture. Observing

the figure, we can see that the Camera API module is responsible for configuring the

camera parameters and capturing the images.

 The Image Processing block is subdivided in three blocks responsible for

doing the computer vision processes. The Background Subtraction extracts the

moving objects from the image, while the Contour Detection applies a contour to the

objects extracted. In the end, the objects are classified for future decisions.

 The Decision Algorithm block is responsible for the decisions of recording the

video and stopping the program in case of no pedestrian on the scene.

Figure 6 - Software architecture blocks diagram.

13

4.2 – Solution

 The adopted solution is based on the results of the studies made on the

previous sections. The system will take pictures in a loop and for each image captured

the image processing will be done. The Image Processing will be able to detect the

presence of pedestrians, distinguing from animals or vehicles.

 The first version of the camera module released has an IR filter in front of its

image sensor. As this surveillance system has as one of the requirements the

capability of deploy in different environment, the camera should be sensitive to dark

scenes. The solution found was to remove the IR filter [9], allowing the use of IR

lights to illuminate the scene during the nighttime.

 The study of the object detection techniques using background subtraction,

directed to the use of the MoG solution. As explained, it will have better

performances in low-end hardware, like Raspberry Pi. After detecting the objects, it is

needed to classify them. The simplest and fastest way is to observe the objects’

dimensions. After detecting the contour of the object, it is fitted a bounding box

around it. The bounding box gives the height and the width of the objects in pixels

units, but we can estimate if it is a human by the ratio between height and width.

 Considering that the Raspiberry Pi will be working as a part of a bigger

solution, it is possible to say that the system contains a PIR sensor to save energy and

turn on the Raspberry Pi if a movement is detected. The last step is the storage and

power save decisions. When the Raspberry Pi turns on, the program will start looking

for humans on the scene. When detected the presence of humans, the program will

start recording videos of 5 minutes until no human is on the scene anymore. This way

we can save storage by recording only important information. The use of small video

files are to make easier for upload to a server, if needed. In case of the program does

not detect human for a certain period, it can power off the board to save energy.

14

Chapter 5 – Starting Configurations
 By analyzing the camera API and its configuration options, with performance

experiments, it was possible to establish what would be the best configuration for the

camera and the recorded video. The configurations shown in this section are

considering the constraints for better storage management and hardware performance.

For this implementation, it was considered that the configurations are not changed

through the program execution, but the exposure, as explained in section 6.1.

5.1 – Camera

 The camera is configured with the functions implemented by the Raspberry Pi

team to make easier for the developers to interface with the mmal API. There are

several functions, one for each parameter; to simplify it was created a function that is

able of configuring all parameters at once, as it is shown on Table 4 followed by the

arguments, on Table 5, used for the configuration.

 It is important to note that the exposure is set to off on the configurations in

order to avoid abrupt changes in the camera exposure due to light changes. It will be

better explained on chapter 6.

Table 4 - Function set_camera_parameters description.

int set_camera_parameters(MMAL_COMPONENT_T *camera, const

RASPICAM_CAMERA_PARAMETERS params)

camera Camera object created for communication with the hardware

params Arguments list with the configuration values

Table 5 - Camera configuration values.

Parameter Values

Sharpness 0

Contrast 0

Brightness 50

Saturation 0

Video Stabilization 0

Exposure Compensation 0

15

Rotation 180

Horizontal Flip 0

Vertical Flip 0

Exposure Mode Off

Exposure Metering Mode Auto and Off (section 6.1)

Auto White Balance Mode Off

Image Effect None

Color Effect – Chrominance Disabled

5.2 – Video Recording

 The video is recorded by saving the frames captured by the camera with the

OpenCV library. Every time a video is recorded, it is generated a random string for

the file name and it is added the extension “.avi”. The use of a random string was

requires, instead of the time, because the Raspberry Pi will have the power interrupted

to save power, so it will not keep the current time. On the Table 6, there is a

description of the function parameters and the arguments used for creating and setting

up the video output file.

Table 6 - Description of the open function

bool VideoWriter::open(const string& filename, int fourcc, double fps, Size

frameSize, bool isColor=true)

filename – File Name Random.avi

fourcc – Four CC code of codec DIVX

fps – Frames per second 2.5

frameSize – Resolution 1280 x 720

isColor – Color or Black and White False

16

Chapter 6 – Detection and Logic
 In this chapter, it is explained the main algorithms used for the image

processing and the video recording. It is considered the number of frames as the time

unity, since every cycle of the loop corresponds to a frame, every frame corresponds

to 1/2.5 of a second and each instruction in the loop is executed only once.

6.1 – Pedestrian Detection

Before executing the MoG algorithm, some steps were necessary to generate a

better image to reach the expected performance. The camera API does not provide a

method to set up a fixed value to the exposure. The exposure is very important when

we are working with a camera that must be able to see in bright and dark ambient

without interfering in the object detection. Therefore, it was needed a workaround to

fix it.

Considering that the camera will only turn on when a pedestrian is detected,

we can suppose that it will turn on and off many times. With that in mind, we can set

up an exposure for each time it comes up. The camera exposure is set up to Auto

while it capture the first two frames. After that, the camera will already be configured

for the best exposure; therefore, we can turn off the exposure. Setting it to Off was

observed that it saves the previous exposure configuration preventing the camera from

abrupt brightness changes.

The first step of the image processing is the resize of the captured image. The

original image, as shown in the camera configuration section, is being capture in 1280

x 720, but processing an image with this size would take longer, reducing the

processing speed to 1 fps. In the tests by reducing the image for one third, it is

possible to obtain results close to the one with the original image, but this time with a

processing speed of 2.5 fps.

The next step is to execute the MoG function implemented in OpenCV library.

In this case, it is used the method described by Zivkovic and Heijden [7] and

implemented in the class BackgroundSubtractorMOG2. The constructor and the

operator for the class are shown on the Table 7, as well the other functions used.

17

Table 7 - Description of the OpenCV used functions.

BackgroundSubtractorMOG2::BackgroundSubtractorMOG2(int history, float

varThreshold, bool bShadowDetection=true);

history Number of frames used on the background average

varThreshold Number of Gaussian mixtures

bShadowDetection Detection of object’s shadow

void BackgroundSubtractorMOG2::operator()(InputArray image, OutputArray

fgmask, double learningRate=-1);

image Input image

fgmask Output foreground mask image

learningRate Learning rate of the background update

void erode(InputArray src, OutputArray dst, InputArray kernel, Point

anchor=Point(-1,-1), int iterations=1, int borderType=BORDER_CONSTANT,

const Scalar& borderValue=morphologyDefaultBorderValue())

src Input image

dst Output image

kernel Structuring element used for erosion

anchor Position of the anchor within the element

interactions Number of times the erosion is applied

borderType Pixel extrapolation method

borderValue Border value in case of constant border

void dilate(InputArray src, OutputArray dst, InputArray kernel, Point

anchor=Point(-1,-1), int iterations=1, int borderType=BORDER_CONSTANT,

const Scalar& borderValue=morphologyDefaultBorderValue())

src Input image

dst Output image

kernel Structuring element used for erosion

anchor Position of the anchor within the element

interactions Number of times the erosion is applied

18

borderType Pixel extrapolation method

borderValue Border value in case of constant border

void findContours(InputOutputArray image, OutputArrayOfArrays contours,

OutputArray hierarchy, int mode, int method, Point offset=Point())

image Input image

contours Output array of contours detected

hierarchy Output array that shows when a contour is inside another

mode Contour retrieval mode

method Contour approximation method

offset Offset that shifts every contour point

double arcLength(InputArray curve, bool closed)

curve Input array of curves

closed If true, the curve is closed (first and last vertices are

connected)

Rect boundingRect(InputArray points)

points Point set

The constructor has a peculiarity, because this implementation of the MoG

method permits the detection of shadows, what can be used to remove them from the

foreground. The operator function extract the foreground mask and automatically

calculate the new background model, simplifying the method.

The foreground mask can be quite noisy, so in order to get rid of the noise

Openings are done. Opening is a morphological operation composed of two other

morphological transformation: erosion and dilation (functions erode and dilate). The

number of transformation need to be calibrated based on the scenario to obtain better

results. The values can be set in runtime throught the configuration file.

With the clean image in hands, it is possible to find the contours of the objects

by using the function findContours. To remove once again the noise, it is calculated

19

the length of the contours, with the function arcLength, and ignore the ones with

length below or above calibrated numbers. This calibration is important because the

object can assume different sizes on the image, depending on where the camera is

deployed, so the ratio between noise and object is also different.

The human detection is made by calculating the object’s dimension (height

and width). For that, it is applied a bounding box using the function boundingRect.

This function only needs, as argument, the contour line of the object detected and it

will fit a bounding box around it. Knowing the dimensions of the box, they are

considered as the dimensions of the object. To differentiate the humans from other

types of objects, the dimensions of the human body are used, in other words, the

height is usually greater than the width.

6.2 – Storage and Power Control

 The storage and power control, despite of its low complexity, is responsible

for the main objectives of this project. First, reduce the number of false alarms

generated by the simples systems that make use of PIR sensors as the only source of

movement detector, and by consequence, reduce the amount of data generated.

Second, reduce the power consumption, by shutting down the system when no

pedestrian is detected.

 In every program cycle, the program analyzes the image looking for

pedestrians. This process starts as soon as the program is executed and only stops

when it is powered off. For controlling the video recording and the shutdown of the

board, there were implemented four rules:

• If a pedestrian is detected, it starts recording the video and the number

of frames captured.

• If during the first six frames, half of them does not contain any

pedestrians, it stops recording and shuts down the board.

• If no pedestrian is detected for 15 consecutive frames (5 seconds), it

stops recording and shuts down the board.

• If the video being recorded reaches 5 minutes long it is closed and a

new one is created to continue.

20

Chapter 7 – Results
 The results listed here were obtained in tests made on campus during high-

traffic hours to test the algorithm processing speed and performance. In this proof of

concept, it is expecteded to be able of detecting human objects with low influence of

the environment in the detection results.

Figure 7 - Object moving in four consecutive frames.

On the Figure 7, we can see the object moving through four consecutive

frames. It is possible to note that single objects are well detected by the program.

During the tests was observed that sometimes the object is not detected, as it is not

using any tracking algorithm, the object gets lost in some frames.

(a) (b) (c)

 (d)

Figure 8 - Detection errors that can generate false alarms: (a) Object occlusion,
(b) reflex, (c) low contrast and (d) shape changes.

21

On the other hand, the detection algorithm failed in a few cases. Pedestrians

can be walking in groups (Figure 7a) and crossing by each other or by a static object.

In these cases, they will not be detected, or the detection will be wrong. To reduce the

error events, a stricter dimension classification can be applied to exclude group of

people. Researches are being made to develop occlusion handles capable of detect the

objects even when occluded [10, 12].

A false alarm can occurs when the scene contains reflexive surfaces or

shadows; the same object is detected multiple times, one for each surface (Figure 7b).

A fix for this problem is harder to obtain, because sometimes it is not possible to

compare the objects or detect shadows. This problem will not affect our system

directly, since we are not focusing on each object and shadows can be detected

separated as they have a different contrast from the object.

The low contrast can be a difficulty for the MoG algorithm, so after the

foreground extraction, some parts of the object are not detected (Figure 7c) or the low

amount of points for the object are missinterpreted as noise. Increasing the resolution

or using color images can reduce the errors caused by the contrast, but it would

represent a slower image processing.

 Moving objects can change their shapes through the time, as the camera sees

them. If a person crouch for any reason, it will not be detected, or if a car or a

motorcycle are viewed in vertical position relative to the camera (Figure 7d), the

dimensions of the object will correspond to a human, as defined by the algorithm.

Camera networks are helping to solve this problem, because they are able to track the

same object between all the cameras, and with it, it is possible to see the same object

by different angles [11].

22

Chapter 8 – Conclusion and Future Works
 The results presented show that the project could solve, in a simple way, two

well knowns problems of the surveillance system, the storage data amount and the

low energy efficiency. Despite the fact of the human detection algorithm not being

capable of achieve perfect accuracy, it could detect most of the moving bodies that

crossed by the camera at least once in a period of 1 second, period necessary to

continue recording after starting the program. The results are already very significant,

considering that the low power and storage consumption were achieved by a system

cheaper and smarter than the current commercial systems.

 The program needs improvements to speed up the image processing, to be able

to achieve better detection results in a higher frame rate. New studies are being made

to allow images to be processed on the GPU of the Raspiberry Pi, achieving better

results with the use of specific libraries. The use of new algorithms for object

detection, like the one described by Zhu et al [13], can also be good improvements.

 This project was developed imagining it as a part of major system. In the

idealized system, this program would be the module responsible for acquiring the

video. In future works, it is planed the development of new modules to reduce the

energy necessary for surveillance cameras. By adding a solar energy panel, the

camera will be capable of harvesting the solar energy and be wireless. With a very

low power Wi-Fi module, it will be able to upload the recorded videos to a server. In

addition, to control all the modules, in order to keep the performance and control the

energy usage through periods of little or no solar energy supplied, there will be a

control module.

23

References

[1] Viola, Paul, and Michael Jones. "Robust real-time object detection." International

Journal of Computer Vision 4 (2001).

[2] Crow, Franklin C. "Summed-area tables for texture mapping." ACM SIGGRAPH

Computer Graphics. Vol. 18. No. 3. ACM, 1984.

[3] Dalal, Navneet, and Bill Triggs. "Histograms of oriented gradients for human

detection." Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE

Computer Society Conference on. Vol. 1. IEEE, 2005.

[4] Birgi Tamersoy. “Background Subtraction”. The University of Texas at Austin.

http://www.cs.utexas.edu/~grauman/courses/fall2009/slides/lecture9_background.pdf

[5] Stauffer, Chris, and W. Eric L. Grimson. "Adaptive background mixture models

for real-time tracking." Computer Vision and Pattern Recognition, 1999. IEEE

Computer Society Conference on. Vol. 2. IEEE, 1999.

[6] OV5647 - 5-megapixel ¼” Image Sensor with 1.4 µm Omni BSI Technology

Offering HD Video. https://www.dropbox.com/s/yfzkhm4i3iqhffe/ova5647.pdf

[7] Z.Zivkovic, F. van der Heijden. “Efficient Adaptive Density Estimation per

Image Pixel for the Task of Background Subtraction”, Pattern Recognition

Letters, vol. 27, no. 7, pages 773-780, 2006.

[8] OpenCV – MoG Docummentation

http://docs.opencv.org/trunk/modules/video/doc/motion_analysis_and_object_

tracking.html?highlight=mog#id12

[9] IR filter shenanigans. http://www.raspberrypi.org/archives/4088

[10] Johnsen, Swantje, and Ashley Tews. "Real-time object tracking and

classification using a static camera." Proceedings of IEEE International

Conference on Robotics and Automation, workshop on People Detection and

Tracking. 2009.

24

[11] Chen, Phoebus, et al. "A low-bandwidth camera sensor platform with

applications in smart camera networks." ACM Transactions on Sensor

Networks (TOSN) 9.2 (2013): 21.

[12] Raman, Rahul, Pankaj K. Sa, and Banshidhar Majhi. "Occlusion

prediction algorithms for multi-camera network." Distributed Smart Cameras

(ICDSC), 2012 Sixth International Conference on. IEEE, 2012.

[13] Zhu, Fang, Chen Zhao, and Jinmei Cheng. "ECLC: Edge character and

latency connection enhanced inter-frame difference algorithm for real-time

outdoor surveillance." Distributed Smart Cameras (ICDSC), 2012 Sixth

International Conference on. IEEE, 2012.

25

Apendix 1 - Pedestrian Detection Program
File mydemo.cpp

#include <stdio.h>
#include <stdlib.h>
#include <iostream>
#include <vector>
#include <sstream>
#include <fstream>
#include <string>
#include <time.h>

#include <opencv2/opencv.hpp>
#include <opencv2/core/core_c.h>
#include <opencv2/objdetect/objdetect.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>

extern "C" {
#include "bcm_host.h"
#include "interface/vcos/vcos.h"

#include "interface/mmal/mmal.h"
#include "interface/mmal/mmal_logging.h"
#include "interface/mmal/mmal_buffer.h"
#include "interface/mmal/util/mmal_util.h"
#include "interface/mmal/util/mmal_util_params.h"
#include "interface/mmal/util/mmal_default_components.h"
#include "interface/mmal/util/mmal_connection.h"

#include "RaspiCamControl.h"
#include "RaspiPreview.h"
#include "RaspiCLI.h"

#include "vgfont.h"
}

using namespace cv;
using namespace std;
/// Camera number to use - we only have one camera, indexed from 0.
#define CAMERA_NUMBER 0

// Standard port setting for the camera component
#define MMAL_CAMERA_PREVIEW_PORT 0
#define MMAL_CAMERA_VIDEO_PORT 1
#define MMAL_CAMERA_CAPTURE_PORT 2

// Video format information
#define VIDEO_FRAME_RATE_NUM 30

26

#define VIDEO_FRAME_RATE_DEN 1

/// Video render needs at least 2 buffers.
#define VIDEO_OUTPUT_BUFFERS_NUM 3

/// Open cv numbers of frames processed
#define OPENCV_CONFIG_FRAMES 100

int mmal_status_to_int(MMAL_STATUS_T status);

/** Structure containing all state information for the current run
*/
typedef struct
{
 int timeout; /// Time taken before frame is
grabbed and app then shuts down. Units are milliseconds
 int width; /// Requested width of image
 int height; /// requested height of image
 int bitrate; /// Requested bitrate
 int framerate; /// Requested frame rate (fps)
 int intraperiod; /// Intra-refresh period (key frame
rate)
 char *filename; /// filename of output file
 int verbose; /// !0 if want detailed run
information
 int demoMode; /// Run app in demo mode
 int demoInterval; /// Interval between camera
settings changes
 int opencv_width; /// Size of the opencv
image
 int opencv_height; ///
Size of the opencv image
 int maxLength;
 /// Number of frames on each video
 int consecutiveHumans; ///
Minimum number of consecutive humans detection to continue recording
 int consecutiveNoHumans; /// Minimum
number of consecutive frames without humans to stop recording

 RASPIPREVIEW_PARAMETERS preview_parameters; /// Preview
setup parameters
 RASPICAM_CAMERA_PARAMETERS camera_parameters; /// Camera
setup parameters

 MMAL_COMPONENT_T *camera_component; ///
Pointer to the camera component
 MMAL_CONNECTION_T *preview_connection; /// Pointer to
the connection from camera to preview

27

 MMAL_POOL_T *video_pool; ///
Pointer to the pool of buffers used by video port
} RASPIVID_STATE;

/** Struct used to pass information in video port userdata to callback
*/
typedef struct
{
 string fileName; ///
File name
 VideoWriter fileHandle; ///
File handle to write buffer data to.
 VideoWriter fileHandle2; /// File
handle to write buffer data to.
 RASPIVID_STATE *pstate; ///
pointer to our state in case required in callback
 int abort;
 /// Set to 1 in callback if an error occurs to attempt to abort the capture
 Mat image;
 /// Main image captured
 Mat image2;
 /// Image processed in opencCV
 int humanDetected; ///
Number of consecutive frames with human detected
 int noHumanDetected; ///
Number of consecutive frames without human
 int framesRecorded; ///
Number of frames recorded
 bool uploading;
 /// Control if any file is being uploaded.
 VCOS_SEMAPHORE_T complete_semaphore;
} PORT_USERDATA;

/**
* Assign a default set of parameters to the state passed in
*
* @param state Pointer to state structure to assign defaults to
*/
static void default_status(RASPIVID_STATE *state)
{
 if (!state)
 {
 vcos_assert(0);
 return;
 }

 // Default everything to zero
 memset(state, 0, sizeof(RASPIVID_STATE));

 // Now set anything non-zero

28

 state->timeout = 5000; // 5s delay before take image
 state->width = 1280; // Default to 1080p
 state->height = 720;
 state->bitrate = 17000000; // This is a decent default bitrate for 1080p
 state->framerate = VIDEO_FRAME_RATE_NUM;
 state->intraperiod = 0; // Not set
 state->verbose = 0;
 state->demoMode = 0;
 state->demoInterval = 250; // ms

 // Setup preview window defaults
 raspipreview_set_defaults(&state->preview_parameters);

 // Set up the camera_parameters to default
 raspicamcontrol_set_defaults(&state->camera_parameters);
}

/**
* buffer header callback function for camera control
*
* Callback will dump buffer data to the specific file
*
* @param port Pointer to port from which callback originated
* @param buffer mmal buffer header pointer
*/
static void camera_control_callback(MMAL_PORT_T *port,
MMAL_BUFFER_HEADER_T *buffer)
{
 MMAL_BUFFER_HEADER_T *new_buffer;
 PORT_USERDATA * userdata = (PORT_USERDATA *) port->userdata;
 RASPIVID_STATE *pstate = userdata->pstate;

 int w = userdata->pstate->width;
 int h = userdata->pstate->height;

 Mat py = Mat(Size(w, h), CV_8UC1); // Y component of YUV
I420 frame

 mmal_buffer_header_mem_lock(buffer);

 memcpy(userdata->image.data, buffer->data, w * h); // read Y

 userdata->framesRecorded++;

 // Check if the video didn't record humans in the first 3 seconds
 if(userdata->framesRecorded > 4 && userdata->framesRecorded < pstate-
>maxLength && userdata->humanDetected < pstate->consecutiveHumans)
 {
 //remove(userdata->fileName.c_str());

29

 //system("poweroff");
 //cout<<"No humans on start\n";
 }
 // Check if the video is less then the maximun length and didn't have human in
the pre determinated time
 else if(userdata->framesRecorded < pstate->maxLength && userdata-
>noHumanDetected >= pstate->consecutiveNoHumans)
 {
 //stop recording and power off
 //system("poweroff");
 //cout<<"No humans for a while\n";
 }
 // Check if the video has reached the maximum length and open a new one
 else if(userdata->framesRecorded >= pstate->maxLength)
 {
 //userdata->fileName = to_string(rand()) + ".avi";
 //userdata->fileHandle.open(userdata->fileName,
CV_FOURCC('D','I','V','X'), 3, userdata->image.size(), false);
 //userdata->framesRecorded = 0;
 //cout<<"Long enough to create a new file\n";
 }

 mmal_buffer_header_mem_unlock(buffer);

 if (vcos_semaphore_trywait(&(userdata->complete_semaphore)) !=
VCOS_SUCCESS) {
 vcos_semaphore_post(&(userdata->complete_semaphore));
 }

 mmal_buffer_header_release(buffer);

 // and send one back to the port (if still open)
 if (port->is_enabled) {
 MMAL_STATUS_T status;

 new_buffer = mmal_queue_get(pstate->video_pool->queue);

 if (new_buffer)
 status = mmal_port_send_buffer(port, new_buffer);

 if (!new_buffer || status != MMAL_SUCCESS)
 printf("Unable to return a buffer to the video port\n");
 }
}

/**
* Create the camera component, set up its ports
*
* @param state Pointer to state control struct

30

*
* @return MMAL_SUCCESS if all OK, something else otherwise
*
*/
static MMAL_STATUS_T create_camera_component(RASPIVID_STATE *state)
{
 MMAL_COMPONENT_T *camera = 0;
 MMAL_ES_FORMAT_T *format;
 MMAL_PORT_T *preview_port = NULL, *video_port = NULL, *still_port =
NULL;
 MMAL_STATUS_T status;

 /* Create the component */
 status =
mmal_component_create(MMAL_COMPONENT_DEFAULT_CAMERA,
&camera);

 if (status != MMAL_SUCCESS)
 {
 vcos_log_error("Failed to create camera component");
 goto error;
 }

 if (!camera->output_num)
 {
 status = MMAL_ENOSYS;
 vcos_log_error("Camera doesn't have output ports");
 goto error;
 }

 preview_port = camera->output[MMAL_CAMERA_PREVIEW_PORT];
 video_port = camera->output[MMAL_CAMERA_VIDEO_PORT];
 still_port = camera->output[MMAL_CAMERA_CAPTURE_PORT];

 // set up the camera configuration
 {
 MMAL_PARAMETER_CAMERA_CONFIG_T cam_config =
 {
 { MMAL_PARAMETER_CAMERA_CONFIG,
sizeof(cam_config) },
 .max_stills_w = state->width,
 .max_stills_h = state->height,
 .stills_yuv422 = 0,
 .one_shot_stills = 0,
 .max_preview_video_w = state->width,
 .max_preview_video_h = state->height,
 .num_preview_video_frames = 3,
 .stills_capture_circular_buffer_height = 0,
 .fast_preview_resume = 0,

31

 .use_stc_timestamp =
MMAL_PARAM_TIMESTAMP_MODE_RESET_STC
 };
 mmal_port_parameter_set(camera->control, &cam_config.hdr);
 }

 // Now set up the port formats
 // Set the encode format on the video port
 format = video_port->format;
 format->encoding = MMAL_ENCODING_JPEG;
 format->es->video.width = state->width;
 format->es->video.height = state->height;
 format->es->video.crop.x = 0;
 format->es->video.crop.y = 0;
 format->es->video.crop.width = state->width;
 format->es->video.crop.height = state->height;
 format->es->video.frame_rate.num = state->framerate;
 format->es->video.frame_rate.den = VIDEO_FRAME_RATE_DEN;

 video_port->buffer_size = video_port->buffer_size_recommended;

 if (video_port->buffer_size < video_port->buffer_size_min)
 video_port->buffer_size = video_port->buffer_size_min;

 video_port->buffer_num = video_port->buffer_num_recommended;

 if (video_port->buffer_num < video_port->buffer_num_min)
 video_port->buffer_num = video_port->buffer_num_min;

 status = mmal_port_format_commit(video_port);

 if (status != MMAL_SUCCESS)
 {
 vcos_log_error("camera video format couldn't be set");
 goto error;
 }

 /* Enable component */
 status = mmal_component_enable(camera);

 if (status != MMAL_SUCCESS)
 {
 vcos_log_error("camera component couldn't be enabled");
 goto error;
 }

 // crate pool from camera still port
 if((state->video_pool = mmal_port_pool_create(video_port, video_port-
>buffer_num, video_port->buffer_size)) == NULL)
 {

32

 vcos_log_error("Error creating video pool\n");
 goto error;
 }

 raspicamcontrol_set_all_parameters(camera, &state->camera_parameters);

 state->camera_component = camera;

 if (state->verbose)
 fprintf(stderr, "Camera component done\n");

 return status;

error:

 if (camera)
 mmal_component_destroy(camera);

 return status;
}

/**
* Destroy the camera component
*
* @param state Pointer to state control struct
*
*/
static void destroy_camera_component(RASPIVID_STATE *state)
{
 if (state->camera_component)
 {
 mmal_component_destroy(state->camera_component);
 state->camera_component = NULL;
 }
}

/**
* Connect two specific ports together
*
* @param output_port Pointer the output port
* @param input_port Pointer the input port
* @param Pointer to a mmal connection pointer, reassigned if function successful
* @return Returns a MMAL_STATUS_T giving result of operation
*
*/
static MMAL_STATUS_T connect_ports(MMAL_PORT_T *output_port,
MMAL_PORT_T *input_port, MMAL_CONNECTION_T **connection)
{
 MMAL_STATUS_T status;

33

 status = mmal_connection_create(connection, output_port, input_port,
MMAL_CONNECTION_FLAG_TUNNELLING |
MMAL_CONNECTION_FLAG_ALLOCATION_ON_INPUT);

 if (status == MMAL_SUCCESS)
 {
 status = mmal_connection_enable(*connection);
 if (status != MMAL_SUCCESS)
 mmal_connection_destroy(*connection);
 }

 return status;
}

/**
* Checks if specified port is valid and enabled, then disables it
*
* @param port Pointer the port
*
*/
static void check_disable_port(MMAL_PORT_T *port)
{
 if (port && port->is_enabled)
 mmal_port_disable(port);
}

/**
* Set the camera configuration
*
* @param camera Pointer the camera component
* @param params Parameters to be sent to the camera
*
*/
int set_camera_parameters(MMAL_COMPONENT_T *camera, const
RASPICAM_CAMERA_PARAMETERS params)
{
 int result;

 result = raspicamcontrol_set_saturation(camera, params.saturation);
 result += raspicamcontrol_set_sharpness(camera, params.sharpness);
 result += raspicamcontrol_set_contrast(camera, params.contrast);
 result += raspicamcontrol_set_brightness(camera, params.brightness);
 result += raspicamcontrol_set_ISO(camera, params.ISO);
 result += raspicamcontrol_set_video_stabilisation(camera,
params.videoStabilisation);
 result += raspicamcontrol_set_exposure_compensation(camera,
params.exposureCompensation);
 result += raspicamcontrol_set_exposure_mode(camera,
params.exposureMode);

34

 result += raspicamcontrol_set_metering_mode(camera,
params.exposureMeterMode);
 result += raspicamcontrol_set_awb_mode(camera, params.awbMode);
 result += raspicamcontrol_set_imageFX(camera, params.imageEffect);
 result += raspicamcontrol_set_colourFX(camera, ¶ms.colourEffects);
 result += raspicamcontrol_set_rotation(camera, params.rotation);
 result += raspicamcontrol_set_flips(camera, params.hflip, params.vflip);

 return result;
}

/**
* main
*/
int main(int argc, const char **argv)
{
 // Our main data storage vessel..
 RASPIVID_STATE state;

 MMAL_STATUS_T status = MMAL_SUCCESS;
 MMAL_PORT_T *camera_preview_port = NULL;
 MMAL_PORT_T *camera_video_port = NULL;
 MMAL_PORT_T *camera_still_port = NULL;
 MMAL_PORT_T *preview_input_port = NULL;
 bcm_host_init();

 // Register our application with the logging system
 vcos_log_register("RaspiVid", VCOS_LOG_CATEGORY);

 default_status(&state);

 // OK, we have a nice set of parameters. Now set up our components
 // We have two components. Camera and Preview

 if ((status = create_camera_component(&state)) != MMAL_SUCCESS)
 {
 vcos_log_error("%s: Failed to create camera component", __func__);
 }
 else if ((status = raspipreview_create(&state.preview_parameters)) !=
MMAL_SUCCESS)
 {
 vcos_log_error("%s: Failed to create preview component", __func__);
 destroy_camera_component(&state);
 }
 else
 {
 PORT_USERDATA callback_data;

 srand (time(NULL));

35

 //size of the image processed by the OpenCV
 float scale = 3;
 state.opencv_width = 1280 / scale;
 state.opencv_height = 720 / scale;

 float scale_width = 1280 / state.opencv_width;
 float scale_height = 720 / state.opencv_height;

 /* setup opencv */
 callback_data.image = Mat(Size(state.width, state.height), CV_8UC1);
 callback_data.image2 = Mat(Size(state.width, state.height),
CV_8UC1);

 //set up video file
 callback_data.fileName = to_string(rand()) + ".avi";
 VideoWriter record(callback_data.fileName,
CV_FOURCC('D','I','V','X'), 2.5, callback_data.image.size(), false);
 VideoWriter record2("Demo_"+callback_data.fileName,
CV_FOURCC('D','I','V','X'), 2.5, Size(state.opencv_width, state.opencv_height),
false);
 callback_data.fileHandle = record;
 callback_data.fileHandle2 = record2;

 if (state.verbose)
 fprintf(stderr, "Starting component connection stage\n");

 camera_preview_port = state.camera_component-
>output[MMAL_CAMERA_PREVIEW_PORT];
 camera_video_port = state.camera_component-
>output[MMAL_CAMERA_VIDEO_PORT];
 camera_still_port = state.camera_component-
>output[MMAL_CAMERA_CAPTURE_PORT];
 preview_input_port = state.preview_parameters.preview_component-
>input[0];
 RASPICAM_CAMERA_PARAMETERS paramsCamera;

 paramsCamera.sharpness = 0;
 paramsCamera.contrast = 0;
 paramsCamera.brightness = 50;
 paramsCamera.saturation = 0;
 paramsCamera.ISO = 400;
 paramsCamera.videoStabilisation = 0;
 paramsCamera.exposureCompensation = 0;
 paramsCamera.exposureMode =
MMAL_PARAM_EXPOSUREMODE_AUTO;
 paramsCamera.exposureMeterMode =
MMAL_PARAM_EXPOSUREMETERINGMODE_AVERAGE;
 paramsCamera.awbMode = MMAL_PARAM_AWBMODE_OFF;
 paramsCamera.imageEffect = MMAL_PARAM_IMAGEFX_NONE;
 paramsCamera.colourEffects.enable = false;

36

 paramsCamera.colourEffects.u = 128;
 paramsCamera.colourEffects.v = 128;
 paramsCamera.rotation = 180;
 paramsCamera.hflip = paramsCamera.vflip = 0;

 set_camera_parameters(state.camera_component, paramsCamera);

 if (status == MMAL_SUCCESS)
 {
 // Set up our userdata - this is passed though to the callback
where we need the information.
 callback_data.pstate = &state;
 callback_data.abort = 0;
 callback_data.humanDetected = 0;
 callback_data.noHumanDetected = 0;
 callback_data.uploading = false;
 callback_data.framesRecorded = 0;

 camera_video_port->userdata = (struct
MMAL_PORT_USERDATA_T *)&callback_data;

 // Enable the video port and tell it its callback function
 status = mmal_port_enable(camera_video_port,
camera_control_callback);

 if (status != MMAL_SUCCESS)
 {
 vcos_log_error("Failed to setup video");
 goto error;
 }

 // Send all the buffers to the camera video port
 {
 int num = mmal_queue_length(state.video_pool-
>queue);
 int q;

 for (q = 0; q < num; q++)
 {
 MMAL_BUFFER_HEADER_T *buffer =
mmal_queue_get(state.video_pool->queue);

 if (!buffer) {
 printf("Unable to get a required buffer %d
from pool queue\n", q);
 }

 if (mmal_port_send_buffer(camera_video_port,
buffer) != MMAL_SUCCESS) {

37

 printf("Unable to send a buffer to video
port (%d)\n", q);
 }
 }
 }

 //Start image capture
 if (mmal_port_parameter_set_boolean(camera_video_port,
MMAL_PARAMETER_CAPTURE, 1) != MMAL_SUCCESS)
 {
 goto error;
 }

 vcos_semaphore_create(&callback_data.complete_semaphore,
"mmal_opencv_demo-sem", 0);
 int opencv_frames = 0;

 //Background subtraction variables
 BackgroundSubtractorMOG2 bg;
 bg.set("detectShadows", true);

 //Configuration parameters from the configuration file
 int dilate_n = 5;
 //Number of Dialtes
 int erode_n = 1;
 //Number of Erodes
 state.maxLength = 900; //10
minutes of video approximately (seconds * 3)
 state.consecutiveHumans = 1;
 state.consecutiveNoHumans = 45; //15 seconds
without human on the scene (seconds * 3)

 //Variables of execution
 bool firstRead = false;
 bool exposure = false;

 while (1) {
 if
(vcos_semaphore_wait(&(callback_data.complete_semaphore)) ==
VCOS_SUCCESS) {
 opencv_frames++;

 //Turn off exposure after the initialization
 if(opencv_frames == 2 && exposure == false)
 {
 paramsCamera.exposureMode =
MMAL_PARAM_EXPOSUREMODE_OFF;

 set_camera_parameters(state.camera_component, paramsCamera);
 exposure = true;

38

 }

 //Read configuration file
 if(opencv_frames >=
OPENCV_CONFIG_FRAMES || firstRead == false)
 {
 string line="";
 ifstream file;

 file.open("config");
 if (!file.is_open())
 {
 cout<<"Error opening
configuration file\n";
 }

 while(!file.eof())
 {
 string parameter;
 string value;

 getline(file, line);
 if(line.length()>=3)
 {
 parameter =
line.substr(0,line.find('='));
 value =
line.substr(line.find('=')+1);
 if(parameter == "dilate_n")
 {
 int aux;
 istringstream (
value) >> aux;
 dilate_n=aux;
 }
 else if(parameter ==
"erode_n")
 {
 int aux;
 istringstream (
value) >> aux;
 erode_n=aux;
 }
 else if(parameter ==
"maxLength")
 {
 int aux;
 istringstream (
value) >> aux;

39

 state.maxLength=aux;
 }
 else if(parameter ==
"consecutiveHumans")
 {
 int aux;
 istringstream (
value) >> aux;

 state.consecutiveHumans=aux;
 }
 else if(parameter ==
"consecutiveNoHumans")
 {
 int aux;
 istringstream (
value) >> aux;

 state.consecutiveNoHumans=aux;
 }
 }

 }
 file.close();
 if(!firstRead)
 firstRead = true;
 else
 opencv_frames = 0;
 }

 //Resizes the userdata.image and saves on
userdata.image2 with the size of userdata.image2
 Mat aux;
 resize(callback_data.image, aux,
Size(state.opencv_width, state.opencv_height), 0, 0, CV_INTER_LINEAR);

 //BG Subtract
 Mat fore;
 bg.operator() (aux,fore);

 //Morphological transformations
 erode(fore, fore, Mat(), Point(-1,-1), erode_n);
 dilate(fore, fore, Mat(), Point(-1,-1), dilate_n);

 //Find contours
 vector<vector<cv::Point> > contours;

 findContours(fore, // binary input image
 contours, // vector of vectors of points

40

 CV_RETR_EXTERNAL, // retrieve only
external contours
 CV_CHAIN_APPROX_SIMPLE); // aproximate
contours

 //Verify if the contour is a human
 int human = 0;
 for(int i=0;i < contours.size();i++)
 {
 double arc = arcLength(contours[i], true);
 cout<<arc<<"\n";
 if(arc > 100)
 {
 //Apply bounding box
 Rect body_i =
boundingRect(contours[i]);

 //check if the height is bigger than
the width
 if(body_i.height > body_i.width)
 {
 rectangle(aux,
 body_i,
 Scalar(0,255,255),
 2
);
 human++;

 cout<<"HUMANNNNNN";
 }
 }
 }

 //Add human detected
 if(human > 0)
 {
 callback_data.humanDetected++;
 callback_data.noHumanDetected = 0;

 cout<<"Humans
detected:"<<callback_data.humanDetected;
 }
 //Add human not detect
 else
 {
 callback_data.humanDetected = 0;
 callback_data.noHumanDetected++;
 }
 //Demo
 callback_data.fileHandle2 << aux;

41

 //Generate video in grey scale.
 callback_data.fileHandle <<
callback_data.image;
 }
 }
 }
 else
 {
 //mmal_status_to_int(status);
 vcos_log_error("%s: Failed to connect camera to preview",
__func__);
 }

error:

 fprintf(stderr, "Close down completed");
 }

 return 0;
}

