Universidade Federal do Rio de Janeiro
Escola Politécnica

Departamento de Eletronica e de Computacéao

Embedded Software for Pedestrian Detection using th
Raspberry Pi

Author:
Caio Christovao da Silva Porto
Advisor:
Prof. Carlos José Ribas d'Avila, M. Sc.
Examiner:
Prof. Aloysio de Castro Pinto Pedroza, D. Sc.
Examiner:

Prof. Heraldo Luis Silveira de Almeida, D. Sc.

DEL

March 2014

Dedication

To my parents, siblings and grandparents.

Acknowledgement

To my parents, siblings and grandparents who heipednd guided me
through my education.

To Professor Carlos José Ribas d'Avila for helpiregachieve my

professional objectives and believing in my work.

To professors Aloysio de Castro Pinto PedrozaHardldo Luis Silveira de

Almeida for accepting to participate as examiners.

To Professor Katia Obraczka for welcoming me inlakoratory and giving

me the opportunity to work with her.

To Kevin Abas for working with me in this projeamhd helping | while in UC

Santa Cruz.

To my friends Oliver von Behr Kuster, Felippe Kétoel and Rafael
Rodriguez Martinho for the friendship and fun skdangth me through these years of
undergraduate education.

Abstract of Undergraduate Project presented to RIHRJ as partial fulfillment of

the requirements for the degree of Electronics@oishputer Engineer.

Embedded Software for Pedestrian Detection UsiadRispberry Pi

Caio Christévao da Silva Porto

March/2014

Advisor: Carlos José Ribas d'Avila
Course: Electronics and Computer Engineering

Nowadays surveillance cameras are composed offdesimrdware responsible for

the capture and upload of images to servers.

This project aims the creation of an embedded so#iwapable of processing and
analyzing the captured images within the nodefjtaald then decides if it should be

recorded for later upload.

In this document is described the implementatioaroémbedded software used for

the pedestrians detection.

Keywords: Raspberry Pi, Surveillance, OpenCV, Object Dé&vact

Sumary

D T=To [Tor=1 (o] o [PPSR PPPPPPPPP I
ACKNOWIEAGEMENT ... et iii
ADSITACT ...t e e e e e e e \Y
[T T L] PP PPPPT Vil
CRAIT LIST ..ot e e e e e viii
ADDIEVIATION LISTeiiiiiiiiiiiiiieeie ettt ee e e e e e IX
(@ gF=T o] (=3 g ' 11 o o (1o 1o o I PPRR 1
1.1 —Chapters CONENTSuuuuuiiiiiiiee e e eeeeeee e e e e e e e e e e e e e e e eeeeeees 1
1.2 - TREIME ..ottt e e s enr e e e e e 1
IR I @ | o] =T o 1Y 1
1.4 - JUSHIFICATION ...t 1
1.5 - CONSIIAINTS ...t e e e e e s e e s 2
1.6 — DESCHIPLION ettt e e e e et e+t e ettt ettt a s e e e e e e e eaaaaaeeaeaeaaeeeeens 2
Chapter 2 — Object Detection TECHNIQUES ... e senareeeeeeeeeeieeeeeeeeiiiiiii e 3
2.1 — Haar-like FEALUIESuuuet sttt e e e e e e e e 3
2.2 — Histogram of Oriented Gradientsccceeeeeeeeiiiiniiiieee e 4
2.3 - Background SUBDLIrACHION.........uuueiie e e e 5
2.3.1 — Frame DifferenCiNg...........uieiiieemmeeiiiiiiieae e 5
2.3.2 = MEAN FIILEI ...ttt 6
2.3.3 — MiXtUre Of GAUSSIANScciiiitimeeee et e e enne s 7
(O gF=T o] (=] g Ml o F= U0 1= 1= PR 8
TRt R = 1] 0] o =1 1 Y2 = S PPURRRN 8
3.1.1 — SPECIICALIONS. .. .uiiiie e s 8
3.2 — CameEra MOUUIEcooiiiiiiiii e et e e 9
3.2.1 — SPECITICALIONS.ii e e s 10
BL2.2 — AP e e e 11

Chapter 4 — Project Detailing.........covviieeieeeiiiiice e e 12

V2 Rl =] (o Tod 1 I = Vo | = o 1 12
4.2 — SOIULION ...etiiiiieie ittt ettt e e e e e e e s smmn e e e e eas 13
Chapter 5 — Starting Configurations ... eceeeeeererrimne e eeeeeeeeeeeeeeeeeeee 14
S.1 — CABIMEBIA ..ot ettt 14
5.2 = Vide0 RECOMMING ...uuiiiiiiiieee et e e e 15
Chapter 6 — DeteCtion and LOGICcoceeerernnnnnaaneeeaeeeeeeeeeeeeeesensnennnnseeees 16
6.1 — Pedestrian DeteCHION..........cvvviiiiieiiee e 16
6.2 — Storage and Power CONLIOl e 19
Chapter 7 — RESUILS ..ot e r e e e e e 20

Chapter 8 — Conclusion and FULUIre WOTKS... e «eeeeieriieeeeeeeeeeeeeeeeiinnnnnnnns 22
RETEIEINCES ...k ettt ettt e e e e e e e e e e e s sers et e e e e e eeaaeeeeeas 23

Apendix 1 - Pedestrian Detection Programcccccc...eeeeveeieiiiiiiiieeeeeeeneeeeeenieens 25

Vi

Figure List

Figure 1 - Feature types used by Viola and JONES............oeoeeiviiiiiiiiiiiiiiiiiee 3
Figure 2 - Example of the average gradient imager &Rining.cccoeeeeiiiiieiinnnns 4
Figure 3 - Frame Differencing diagram.ccceeeeviviiieieiiiiiiiiiiie e eeeeeeeeeeeeeee 5
Figure 4 - Raspberry Pi DOArd.coooi oot eeee e e 8
Figure 5 - Camera MOAUIE.ueiii e 10
Figure 6 - Software architecture blocks diagrami.............oeeuvvvieiiiiinnnniieeeneeeen. 12
Figure 7 - Object moving in four consecutive frames............ccccevvvvvvvvviiiinnnn. 20.

Figure 8 - Detection errors that can generate faksens: (a) Object occlusion, (b)

reflex, (c) low contrast and (d) shape changes..........cccovviiiiiiiiiiiiiiiee e, 20

Vii

Chart List

Table 1 - Results example for a Mean Filter algonifor different N............cccccceeeee. 6
Table 2 - Raspberry Pi SpecCifications.cccccceuiiiiiiiiiiiii e eee e 9
Table 3 - Camera parameters and ValUES.cuuuveiiiiiiiiieeeieeeeeceeeeeieas 11

Table 4 - Functioset_camera_parameters description.cccceeevvvvevevvvrns cmmmnm 14

Table 5 - Camera configuration ValUEs. ... e, 14
Table 6 - Description of th@pen fUNCLIONuvviiiiiii e 15
Table 7 - Description of the OpenCV used functianS.............cccceeeeeevvveeveeeennns 17.

viii

Abbreviation List

UFRJ — Universidade Federal do Rio de Janeiro
API — Application Programming Interface

PIR — Passive Infrared Sensor

Chapter 1 - Introduction

1.1— Chapters Contents

In the chapter 1, the proposed problem is stuiidr solved in this Project.
The chapter 2 regards to the study of techniquestct detection. While in the

chapters 3, the study is focused on the descriptitihhe hardware and its API.

Starting on chapter 4, the project description thiedsolutions adopted are
shown. In the chapter 5, the implementation ofddm@era and video configuration is
presented. Whereas in chapter 6, the implementafitre pedestrian detection and

the video record logic are shown.

The chapter 7 shows the results obtained aftetetite and, at last, in the

chapter 8, the conclusions and the future workpeesented.

1.2 - Theme

The theme of this work is the development of an ehdled system, using the
Raspberry Pi minicomputer, which will be capablelefect pedestrians using a

camera module and make decisions.

1.3 - Objectives

The main objective is to develop an embedded systgpable of
preprocessing images, captured by the camera maddudetect pedestrians on a
scene. Furthermore, the system should be ableatacterize the video in order to
define if it is relevant to save it and, later,agu to the server.

1.4 - Justification

Surveillance cameras with low energy consumpti@nytil now, use
movement detection sensors to know when it is rsacgsts activation. Even though,
the use of this kind of system in some environmgetserates large amounts of false

alarms, due to animals and plants in most of tkexa

1.5 - Constraints

For this type of systems, we have, as constrdiatutilization of the
minicomputer Raspberry Pi and its camera moduletaltiee low energy
consumption and the low cost. Furthermore, theesyshust analyses the images in a
fast and optimized way, with the goal of save epamd keep an acceptable video
quality. It is important to mention that the camshauld be able to be deployed in

different types of scenarios with the need of mimmor none calibration.

1.6 — Description

The Project is constituted of a Raspberry Pi éidamera module, assuming
the functionality of surveillance camera. It wileia very lightweight Linux
distribution, a Raspberry Pi Arch Linux versionths embedded operating system

for compilation and execution of image processiragpams.

The main program will be implemented in C++, relyag the constraints of
the OpenCV (Open Source Computer Vision Library) e Raspiberry Pi camera
module API. The public API for the camera is cutieimplemented in C and most

of the OpenCV functions are only implemented in Gxd Python.

The program will be divided in two main sectioimsage capturing and image
processing. The first is a loop responsible forfiguming the camera parameters for
better performance of the image processing algosthnd for the continuous image
capture. The second is responsible for processioly enage captured, looking for
pedestrians and recording the images followingi#fened power and storage save

rules.

Chapter 2 — Object Detection Techniques

In this chapter a study is made of the most paogyfzes of object detection
methods, showing its advantages and disadvant@besobjective here is to find the

best solution that fits the needs and the consggraiithe system.

2.1 — Haar-like Features

The Haar-like Features [1] technique was the fogirovide object detection
with real-time rates. Given an image, a boundingis@pplied to the target object,
which is called “detection window”. A Haar-like fieme considers adjacent
rectangular regions at a specific location in &d@gbn window, sums up the pixel
intensities in each region and calculates the miffee between these sums. This
difference is then used to categorize subsectibaa anage. As shown in Figure 1,
Viola and Jones have four different types of feaduor better coverage of horizontal

and vertical features.

Because such a Haar-like feature is only a weakégar classifier, a large
number of Haar-like features are necessary to desan object with sufficient

accuracy. Therefore, Viola and Jones featuresrg@ned in a classifier cascade.

The key advantage of a Haar-like feature over rathadr features is its
calculation speed. Due to the userdégral images [2], a Haar-like feature of any
size can be calculated in constant time. On therdtand, this type of object
detection technique will not be helpful for thioct, since a lot of training is
required for a good result and this project focaghe flexibility of positioning the

cameras in different scenarios with minimal caliiom

1 "

[]

Figure 1 - Feature types used by Viola and Jones.

3

2.2 — Histogram of Oriented Gradients
The HOG [3] are feature descriptors that repreenintensity gradient or

edge orientation in localized portions of an imafgese descriptors are sufficient to
describe the objects appearance and shape. Thenmaptation is done by dividing
the image into small regions, called “cells”, and éach cell is calculated the
histogram of gradient directions or edge orientegitor the pixels of the cell. The

representation of the descriptor is the combinatiotime histograms, Figure 2.

The biggest advantage of the HOG is that it sugpoxariance to geometric
and photometric transformations: translations tatrons. Such changes make little
difference if they are much smaller than the Iegadtial or orientation size. In
addition, as Dalal and Triggs discovered, coars¢iamsampling, fine orientation
sampling, and strong local photometric normalizapermits the individual body
segmentations to change their appearance and beedyas long as they maintain a
roughly upright position. The HOG thus fits perfgdor human detection.

After testing the HOG algorithm implementation asdrching about its
performance, it was possible to conclude thatrtissuitable for our platform. Using
the method for full body detection, it was obtaimedapproximately 1 frame per
minute processing speed. This result is due thdéndware constraint and the
complexity of the algorithm that even in moderngassor is only able to achieve
14fps using a low-resolution image (640 x 480).i8es the processing speed, this

method of object detection requires training as itased on features description.

Figure 2 - Example of the average gradient image & training.

2.3 - Background Subtraction

The Background Subtraction, also called Foregrddeigction, is a technique
used for extraction of the foreground image. H isidely used method for object
detection in videos from static cameras. This apginaletects moving objects from
the difference between the current frame and agete frame called “background

model”.

2.3.1 — Frame Differencing
In the Frame Differencing technique, it is donaibtsaction between the
current framet(+ 1) and the previous framé.(As we can see, it is assumed that the

background is the previous frame.
Dt+1)=|V(x,y,t+1)—V(x,y,1t)|

To improve the subtraction and remove image naisbresholdrh is

inserted.
[V(x,y,t) =V(x,y,t +1)| > Th

The advantage is that this approach is very quicdapt to changes in
lighting or camera motion. On the other hand, ibaject stops it is no long detected

and only a small portion of the objects” pixeldistected, Figure 3.

M(t)

> Delay

Figure 3 - Frame Differencing diagram.

5

2.3.2 — Mean Filter
The Mean Filter is very similar to the frame difacing, but this time, to
improve the background image it is done an avesadethe previous images. We

assume that the background is more likely to appeaiscene.

N
1
B(x,y) = NZ V(ix,y,t —1)
i=1
This average corresponds to averaging the carnelspg pixel for all the N
images. Then, again, a threshold is applied toaedhue subtraction noise:
[V(x,y,t) —B(x,y)| > Th

Table 1 - Results example for a Mean Filter algoriim for different N.

N Background Model Foreground Mask

2.3.3 — Mixture of Gaussians

The MoG is a type of adaptive background methisd implemented by
Stauffer and Grimson [5] with many improvementgiatt is assumed that every
pixel's intensity values in the video can be modalsing a mixture of Gaussians
model. At each interaction, Gaussians are evaluated) a simple heuristic to
determine which ones are mostly like to corresportie background. Pixels that do
not match with the background Gaussians are ciedsas foreground. Then, the

foreground pixels are grouped using 2D connectedpoment analysis.

This method has a “threshold” for each pixel ameke “thresholds” are
adapting by time, what can improve the noise rednatonsiderably when compared
to the previous shown methods. Another big advanimghat this method, despite of
the mathematical complexity for humans, have a geotbrmance even in low-end
hardware, like the Raspberry Pi (up to 3 fps @ X280).

Chapter 3: Hardware

3.1 — Raspberry Pi

The Raspberry Pi (Figure 4) is a credit-card-s&iedle-board computer
developed in the UK by the Raspberry Pi Foundatith the intention of promoting
the teaching of basic computer science in schddis.first reports of arrival was on
April of 2012, and currently it has already beeippld more than 2 million units

worldwide for all type of consumers.

Figure 4 - Raspberry Pi board.

3.1.1 — Specifications

The Raspberry Pi specifications are shown on #ider2. We can see that its
power consumption and processor speed are relatosglif compared to a regular
computer. The power consumption and its populavdye my main reasons for

picking up this hardware.

Table 2 - Raspberry Pi specifications.

Price US$ 35

Soc Broadcom BCM2835 (CPU, GPU, DSP, SDRAM, andlsin
USB port)

GPU 700 MHz ARM1176JZF-S core (ARM11 family, ARMv6
instruction set)

Memory Broadcom VideoCore IV @ 250 MHz

OpenGL ES 2.0 (24 GFLOPS)

MPEG-2 and VC-1 (with license), 1080p30 h.264/MPEG-
AVC high-profile decoder and encoder

USB 2.0 Ports 2

Video input A CSl input connector for the cameradumie

Video outputs Composite RCA (PAL and NTSC), HDMAV11.3 & 1.4), raw
LCD Panels via DSI 14 HDMI resolutions from 640x360
1920x1200 plus various PAL and NTSC standards.

Audio outputs 3.5 mm jack, HDMI, and, as of rews®boards, I2S audio
Onboard storage SD / MMC / SDIO card slot

Onboard 10/100Mbps Ethernet

network

Low-level 8 x GPIO, UART, I2C bus, SPI bus with two chip stte I2S
peripherals audio, +3.3V, +5V, ground

Power ratings 700 mA (3.5W)

Power source 5 volt via MicroUSB or GPIO header

Size 85.60 mm x 53.98 mm

Weight 459

3.2 — Camera Module

The Raspberry Pi camera module board (Figure S)re@ently launched on
May 2013 allowing the use of the Raspberry Pi &altime video processing
purposes. With the module, two new programs wereduced to help the interaction
with this new module: Raspistill and Raspivid. Tinst one is dedicated to static

images, while the second one to record videos.

The lack of documentation and developer friendbhdecture gave a lot of
work to the pioneers. The first step of all thea@lepers was to try to understand the

bad documented source code and then create theimmaifications.

In this chapter, it will describe and explain thxéséng library for
communication with the camera module board. Thelt®sf my research presented

here are focused on the use of the camera to eagtiatic images.

P

iekl kLl

Figure 5 - Camera module.

3.2.1 — Specifications

The Raspberry Pi Camera Board features a S5SMP 5B pixels)
Omnivision 5647 sensor [6] in a fixed focus moddlee module attaches to
Raspberry Pi, by way of a 15 Pin Ribbon Cableh&dedicated 15-pin MIPI Camera
Serial Interface (CSI), which was designed esplgdiat interfacing to cameras. The
CSl bus is capable of extremely high data rates iteexclusively carries pixel data to
the BCM2835 processor.

» Still Pictures Resolution — 2592 x 1944

* Video Resolution — 1080p @ 30fps, 720p @ 60fps\&BA @ 60/90fps
* Size—-20x 25 x 9mm

* Weight — 30g

* Price - US$ 29.00

10

3.2.2 - API

The two applications released with the camera Wwased on the mmal API,

which runs over OpenMAX. The mmal API provides asier way to communicate

with the hardware than the OpenMAX and it was depetl by Broadcom to use

specifically with this camera model.

Table 3 - Camera parameters and values.

Parameter Values
Sharpness -100 to 100
Contrast -100 to 100
Brightness 0 to 100
Saturation -100 to 100
Video Stabilization Oorl
Exposure Compensation -10to 10
Rotation 0 to 359
Horizontal Flip Oorl
Vertical Flip Oorl

Exposure Mode

Off, Auto, Night, Backlight, SpotligBports,
Snow, Beach, Very Long, Fixed fps, Anti Shake,

Fireworks

Exposure Metering Mode

Average, Spot, Backlit, N&atr

Auto White Balance Mode

Off, Auto, Sunlight, Cloy@hade, Tungsten,

Fluorescent, Incandescent, Flash, Horizon

Image Effect

None, Negative, Solarize, Posterizbit§thoard,
Blackboard, Sketch, Denoise, Emboss, Oil paint
Hatch, Gpen, Pastel, Water Color, Film, Blur,
Saturation, Color Swap, Washed Out, Posterise,

Color Point, Color Balance, Cartoon

Color Effect — Chrominance

16 to 240

11

Chapter 4 — Project Detailing

4.1 — Block Diagram

The block diagram on Figure 4 illustrate the saftvarchitecture. Observing
the figure, we can see that the Camera API modulesiponsible for configuring the

camera parameters and capturing the images.

The Image Processing block is subdivided in tieeks responsible for
doing the computer vision processes. The Backgr&uidraction extracts the
moving objects from the image, while the Contoutddgon applies a contour to the

objects extracted. In the end, the objects aresifilad for future decisions.

The Decision Algorithm block is responsible foe ttlecisions of recording the

video and stopping the program in case of no padasin the scene.

Camera API

Camera

Configuration Image Capture

Image

Image Processing

Background

. Contour Detection | | Object Classification
Subtraction

Number of Pedestrians

Decision
Algorithm

Figure 6 - Software architecture blocks diagram.

12

4.2 — Solution

The adopted solution is based on the resultseo$tirdies made on the
previous sections. The system will take picturea ioop and for each image captured
the image processing will be done. The Image Peocgwill be able to detect the
presence of pedestrians, distinguing from animaisehicles.

The first version of the camera module releasadamalR filter in front of its
image sensor. As this surveillance system has a®bine requirements the
capability of deploy in different environment, tb@mera should be sensitive to dark
scenes. The solution found was to remove the t& fi9], allowing the use of IR
lights to illuminate the scene during the nighttime

The study of the object detection techniques ubamkground subtraction,
directed to the use of the MoG solution. As exmdint will have better
performances in low-end hardware, like RaspberrARer detecting the objects, it is
needed to classify them. The simplest and fastagtisvto observe the objects’
dimensions. After detecting the contour of the obji is fitted a bounding box
around it. The bounding box gives the height amdwidth of the objects in pixels

units, but we can estimate if it is a human byrtte between height and width.

Considering that the Raspiberry Pi will be workagya part of a bigger
solution, it is possible to say that the systemaiois a PIR sensor to save energy and
turn on the Raspberry Pi if a movement is deteckbd.last step is the storage and
power save decisions. When the Raspberry Pi turnghe program will start looking
for humans on the scene. When detected the preséhcenans, the program will
start recording videos of 5 minutes until no hurisaon the scene anymore. This way
we can save storage by recording only importamrmétion. The use of small video
files are to make easier for upload to a serveredded. In case of the program does

not detect human for a certain period, it can povfkethe board to save energy.

13

Chapter 5 — Starting Configurations

By analyzing the camera API and its configuratgtons, with performance
experiments, it was possible to establish what d/bel the best configuration for the
camera and the recorded video. The configuratibows in this section are
considering the constraints for better storage mpament and hardware performance.
For this implementation, it was considered thatabwefigurations are not changed
through the program execution, but the exposurexpkined in section 6.1.

5.1 — Camera

The camera is configured with the functions impeated by the Raspberry Pi
team to make easier for the developers to intedattethe mmal API. There are
several functions, one for each parameter; to siynplwas created a function that is
able of configuring all parameters at once, as #hiown on Table 4 followed by the

arguments, on Table 5, used for the configuration.

It is important to note that the exposure is sefffton the configurations in
order to avoid abrupt changes in the camera expahug to light changes. It will be

better explained on chapter 6.

Table 4 - Functionset_camera_parameters description.

int set_camera_parameters(MMAL_COMPONENT chere, const
RASPICAM_CAMERA_PARAMETERSyarams)

camera Camera object created for communication téhhardware

params Arguments list with the configuration values

Table 5 - Camera configuration values.

Parameter Values
Sharpness 0
Contrast 0
Brightness 50
Saturation 0
Video Stabilization 0
Exposure Compensation 0

14

Rotation 180

Horizontal Flip 0

Vertical Flip 0

Exposure Mode Off

Exposure Metering Mode Auto and Off (section 6.]1)
Auto White Balance Mode | Off

Image Effect None

Color Effect — Chrominance Disabled

5.2 — Video Recording

The video is recorded by saving the frames cagtbyethe camera with the

OpenCYV library. Every time a video is recordeds iyenerated a random string for

the file name and it is added the extension “.aliie use of a random string was

requires, instead of the time, because the RaspPewill have the power interrupted

to save power, so it will not keep the current tiBe the Table 6, there is a

description of the function parameters and thermeqnis used for creating and setting

up the video output file.

Table 6 - Description of theopen function

bool VideoWriter.oper(const string&filename, int fourcc, doublefps, Size
frameSize boolisColor=true)

filename — File Name Random.avi

fourcc — Four CC code of codec DIVX

fps — Frames per second 2.5

frameSize — Resolution 1280 x 720

isColor — Color or Black and White False

15

Chapter 6 — Detection and Logic

In this chapter, it is explained the main algaonthused for the image
processing and the video recording. It is considiéne number of frames as the time
unity, since every cycle of the loop corresponda frame, every frame corresponds

to 1/2.5 of a second and each instruction in tbe s executed only once.

6.1 — Pedestrian Detection

Before executing the MoG algorithm, some steps weressary to generate a
better image to reach the expected performancecdimera APl does not provide a
method to set up a fixed value to the exposure.ekipesure is very important when
we are working with a camera that must be ableoiis bright and dark ambient
without interfering in the object detection. Then&, it was needed a workaround to

fix it.

Considering that the camera will only turn on wiagpedestrian is detected,
we can suppose that it will turn on and off mamyas. With that in mind, we can set
up an exposure for each time it comes up. The amgiosure is set up Auto
while it capture the first two frames. After thdte camera will already be configured
for the best exposure; therefore, we can turnhaffexposure. Setting it ©ff was
observed that it saves the previous exposure amatign preventing the camera from
abrupt brightness changes.

The first step of the image processing is the eesfzhe captured image. The
original image, as shown in the camera configunesection, is being capture in 1280
X 720, but processing an image with this size waaike longer, reducing the
processing speed to 1 fps. In the tests by redubmgnage for one third, it is
possible to obtain results close to the one wighathginal image, but this time with a

processing speed of 2.5 fps.

The next step is to execute the MoG function im@etad in OpenCV library.
In this case, it is used the method described lakaZiic and Heijden [7] and
implemented in the clagackgroundSubtractorMOG2. The constructor and the

operator for the class are shown on the Table WeHlighe other functions used.

16

Table 7 - Description of the OpenCV used functions.

BackgroundSubtractorMOG2::BackgroundSubtractorMO@2(story, float
varThreshold, boolbShadowDetectiortrue);

history Number of frames used on the backgroundaane

varThreshold Number of Gaussian mixtures

bShadowDetectiory Detection of object’s shadow

void BackgroundSubtractorMOG2::operator()(InputArnmage, OutputArray
fgmask, doublelearningRate=-1);

image Input image
fgmask Output foreground mask image
learningRate Learning rate of the background update

void erode(InputArragrc, OutputArraydst, InputArraykernel, Point
anchor=Point(-1,-1), infterations=1, intborderType=BORDER_CONSTANT,
const Scalar&orderValue=morphologyDefaultBorderValue())

src Input image

dst Output image

kernel Structuring element used for erosion
anchor Position of the anchor within the element
interactions Number of times the erosion is applied
borderType Pixel extrapolation method

borderValue Border value in case of constant border

void dilate(InputArraysrc, OutputArraydst, InputArraykernel, Point
anchor=Point(-1,-1), infterations=1, intborderType=BORDER_CONSTANT,

const Scalar&orderValue=morphologyDefaultBorderValue())

src Input image

dst Output image

kernel Structuring element used for erosion
anchor Position of the anchor within the element
interactions Number of times the erosion is applied

17

borderType

Pixel extrapolation method

borderValue

Border value in case of constant border

void findContours(InputOutputArrainage, OutputArrayOfArraysontours,
OutputArrayhierarchy, int mode, int method, Pointoffset=Point())

image Input image

contours Output array of contours detected

hierarchy Output array that shows when a contounsisle another
mode Contour retrieval mode

method Contour approximation method

offset Offset that shifts every contour point

double arcLength(InputArragurve, boolclosed

curve

Input array of curves

closed

If true, the curve is closed (first and lastices are

connected)

Rect boundingRect(InputArrgyoints)

points

Point set

The constructor has a peculiarity, because thisementation of the MoG

method permits the detection of shadows, what eamslked to remove them from the
foreground. The operator function extract the fooegd mask and automatically

calculate the new background model, simplifying riethod.

The foreground mask can be quite noisy, so in aalget rid of the noise

Openings are done. Opening is a morphological dparaomposed of two other

morphological transformation: erosion and dilatfumctionserode anddilate). The
number of transformation need to be calibrateddbasethe scenario to obtain better

results. The values can be set in runtime throtightonfiguration file.

With the clean image in hands, it is possible nal fihe contours of the objects

by using the functiofindContours. To remove once again the noise, it is calculated

18

the length of the contours, with the functiancLength, and ignore the ones with
length below or above calibrated numbers. Thigcation is important because the
object can assume different sizes on the imagesrikpg on where the camera is
deployed, so the ratio between noise and objedssdifferent.

The human detection is made by calculating theablsjeimension (height
and width). For that, it is applied a bounding hming the functiofoundingRect.
This function only needs, as argument, the coninarof the object detected and it
will fit a bounding box around it. Knowing the dim&ons of the box, they are
considered as the dimensions of the object. Tewdfftiate the humans from other
types of objects, the dimensions of the human lavdysed, in other words, the

height is usually greater than the width.

6.2 — Storage and Power Control

The storage and power control, despite of itsdéomplexity, is responsible
for the main objectives of this project. First, ued the number of false alarms
generated by the simples systems that make usi®afdnsors as the only source of
movement detector, and by consequence, reducenberd of data generated.
Second, reduce the power consumption, by shuttimgndhe system when no

pedestrian is detected.

In every program cycle, the program analyzesniage looking for
pedestrians. This process starts as soon as theapras executed and only stops
when it is powered off. For controlling the videszording and the shutdown of the

board, there were implemented four rules:

» If a pedestrian is detected, it starts recordirgvideo and the number
of frames captured.

» If during the first six frames, half of them doest gontain any
pedestrians, it stops recording and shuts dowbdhaed.

e If no pedestrian is detected for 15 consecutivenés (5 seconds), it
stops recording and shuts down the board.

» If the video being recorded reaches 5 minutes ibisgclosed and a

new one is created to continue.

19

Chapter 7 — Results

The results listed here were obtained in testsenasdcampus during high-
traffic hours to test the algorithm processing sp@ed performance. In this proof of
concept, it is expecteded to be able of detectimgdn objects with low influence of

the environment in the detection results.

Figure 7 - Object moving in four consecutive frames

On the Figure 7, we can see the object moving tiivdaur consecutive
frames. It is possible to note that single objaceswell detected by the program.
During the tests was observed that sometimes tieetab not detected, as it is not

using any tracking algorithm, the object gets Instome frames.

Figure 8 - Detection errors that can generate falsalarms: (a) Object occlusion,
(b) reflex, (c) low contrast and (d) shape changes.

20

On the other hand, the detection algorithm faited few cases. Pedestrians
can be walking in groups (Figure 7a) and crossingdxrh other or by a static object.
In these cases, they will not be detected, or éteation will be wrong. To reduce the
error events, a stricter dimension classificatian be applied to exclude group of
people. Researches are being made to develop mrthendles capable of detect the

objects even when occluded [10, 12].

A false alarm can occurs when the scene contailexinge surfaces or
shadows; the same object is detected multiple tiores for each surface (Figure 7b).
A fix for this problem is harder to obtain, becassenetimes it is not possible to
compare the objects or detect shadows. This prolléimot affect our system
directly, since we are not focusing on each olgect shadows can be detected

separated as they have a different contrast frenolbifect.

The low contrast can be a difficulty for the Mo@aiithm, so after the
foreground extraction, some parts of the objechatadetected (Figure 7c) or the low
amount of points for the object are missinterpretgdoise. Increasing the resolution
or using color images can reduce the errors caomgdlte contrast, but it would

represent a slower image processing.

Moving objects can change their shapes throughirties as the camera sees
them. If a person crouch for any reason, it will be detected, or if a car or a
motorcycle are viewed in vertical position relatteethe camera (Figure 7d), the
dimensions of the object will correspond to a hupsandefined by the algorithm.
Camera networks are helping to solve this problegwause they are able to track the
same object between all the cameras, and withist piossible to see the same object
by different angles [11].

21

Chapter 8 — Conclusion and Future Works

The results presented show that the project callesin a simple way, two
well knowns problems of the surveillance systera,storage data amount and the
low energy efficiency. Despite the fact of the hund@tection algorithm not being
capable of achieve perfect accuracy, it could detexst of the moving bodies that
crossed by the camera at least once in a periddsetond, period necessary to
continue recording after starting the program. fidseilts are already very significant,
considering that the low power and storage consiompiere achieved by a system

cheaper and smarter than the current commercitdrags

The program needs improvements to speed up thgeipi@cessing, to be able
to achieve better detection results in a highen&aate. New studies are being made
to allow images to be processed on the GPU of #spiRerry Pi, achieving better
results with the use of specific libraries. The abaew algorithms for object

detection, like the one describedXiyu et al [13],can also be good improvements.

This project was developed imagining it as a parhajor system. In the
idealized system, this program would be the modegponsible for acquiring the
video. In future works, it is planed the developt&imew modules to reduce the
energy necessary for surveillance cameras. By gddsolar energy panel, the
camera will be capable of harvesting the solarggnand be wireless. With a very
low power Wi-Fi module, it will be able to uplodaktrecorded videos to a server. In
addition, to control all the modules, in order &®g the performance and control the
energy usage through periods of little or no sefeergy supplied, there will be a

control module.

22

References

[1] Viola, Paul, and Michael Jones. "Robust real-timpaot detection.” International

Journal of Computer Vision 4 (2001).

[2] Crow, Franklin C. "Summed-area tables for tegtmapping.” ACM SIGGRAPH
Computer Graphics. Vol. 18. No. 3. ACM, 1984.

[3] Dalal, Navneet, and Bill Triggs. "Histogramsariented gradients for human
detection." Computer Vision and Pattern Recognjtkfi05. CVPR 2005. IEEE
Computer Society Conference on. Vol. 1. IEEE, 2005.

[4] Birgi Tamersoy. “Background Subtraction”. ThaiMersity of Texas at Austin.

http://www.cs.utexas.edu/~grauman/courses/fall 28@&'s/lecture9 background.pdf

[5] Stauffer, Chris, and W. Eric L. Grimson. "Ada background mixture models
for real-time tracking." Computer Vision and Patt&ecognition, 1999. IEEE
Computer Society Conference on. Vol. 2. IEEE, 1999.

[6] OV5647 - 5-megapixel ¥4” Image Sensor with 1M dmni BSI Technology
Offering HD Video.https://www.dropbox.com/s/yfzkhm4i3ighffe/ova564dt.p

[7] Z.Zivkovic, F. van der Heijden. “Efficient Adaptive Density Estimation per
Image Pixel for the Task of Background Subtraction”, Pattern Recognition
Letters, vol. 27, no. 7, pages 773-780, 2006.

[8] OpenCV — MoG Docummentation
http://docs.opencv.org/trunk/modules/video/doc/motion analysis and object
tracking.html?highlight=mog#id12

[9] IR filter shenanigans. http://www.raspberrypi.org/archives/4088

[10] Johnsen, Swantje, and Ashley Tews. "Real-time object tracking and
classification using a static camera." Proceedings of IEEE International
Conference on Robotics and Automation, workshop on People Detection and
Tracking. 20009.

23

[11] Chen, Phoebus, et al. "A low-bandwidth camera sensor platform with
applications in smart camera networks." ACM Transactions on Sensor
Networks (TOSN) 9.2 (2013): 21.

[12] Raman, Rahul, Pankaj K. Sa, and Banshidhar Majhi. "Occlusion
prediction algorithms for multi-camera network." Distributed Smart Cameras
(ICDSC), 2012 Sixth International Conference on. IEEE, 2012.

[13] Zhu, Fang, Chen Zhao, and Jinmei Cheng. "ECLC: Edge character and
latency connection enhanced inter-frame difference algorithm for real-time
outdoor surveillance." Distributed Smart Cameras (ICDSC), 2012 Sixth

International Conference on. IEEE, 2012.

24

Apendix 1 - Pedestrian Detection Program

File mydemo.cpp

#include <stdio.h>
#include <stdlib.h>
#include <iostream>
#include <vector>
#include <sstream>
#include <fstream>
#include <string>
#include <time.h>

#include <opencv2/opencv.hpp>

#include <opencv?2/core/core_c.h>

#include <opencv2/objdetect/objdetect.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>

extern "C" {
#include "bcm_host.h"
#include "interface/vcos/vcos.h"

#include "interface/mmal/mmal.h"

#include "interface/mmal/mmal_logging.h"

#include "interface/mmal/mmal_buffer.h"

#include "interface/mmal/util/mmal_util.h"

#include "interface/mmal/util/mmal_util_params.h"
#include "interface/mmal/util/mmal_default_compotseh"
#include "interface/mmal/util/mmal_connection.h"

#include "RaspiCamControl.h"
#include "RaspiPreview.h"
#include "RaspiCLI.h"

#include "vgfont.h"

}

using namespace cv;

using namespace std;

/Il Camera number to use - we only have one canmmetexed from O.
#define CAMERA_NUMBER 0

/I Standard port setting for the camera component
#define MMAL_CAMERA_PREVIEW_PORT 0
#define MMAL_CAMERA_VIDEO_PORT 1
#define MMAL_CAMERA_CAPTURE_PORT 2

/! Video format information
#define VIDEO _FRAME_RATE_NUM 30

25

#define VIDEO_FRAME_RATE_DEN 1

/Il Video render needs at least 2 buffers.
#define VIDEO_OUTPUT_BUFFERS_NUM 3

/Il Open cv numbers of frames processed
#define OPENCV_CONFIG_FRAMES 100

int mmal_status_to_int(MMAL_STATUS_T status);

[** Structure containing all state information fibre current run

*/
typedef struct
{

int timeout; /Il Timeken before frame is
grabbed and app then shuts down. Units are mitirsgs

int width; I/l Requedtwidth of image

int height; Il requetheight of image

int bitrate; /Il Requebbitrate

int framerate; /Il Reqeektrame rate (fps)

int intraperiod,; /Il Intrafresh period (key frame
rate)

char *filename; /I filema of output file

int verbose; /110 iwmt detailed run
information

int demoMode; /Il Run apglemo mode

int demolnterval, /I Intehetween camera
settings changes

int opencv_width; /Il Sizetbé opencv
image

int opencv_height; I

Size of the opencv image
int maxLength;
/Il Number of frames on each video

int consecutiveHumans; 1
Minimum number of consecutive humans detectiorottioue recording
int consecutiveNoHumans; /Il Minimum

number of consecutive frames without humans to stoprding

RASPIPREVIEW_PARAMETERS preview_parameters; Priview
setup parameters

RASPICAM_CAMERA PARAMETERS camera_parameters; CHimera
setup parameters

MMAL_COMPONENT_T *camera_component; 1"
Pointer to the camera component
MMAL_CONNECTION_T *preview_connection; /Il Pder to

the connection from camera to preview

26

MMAL_POOL_T *video_pool; "
Pointer to the pool of buffers used by video port
} RASPIVID_STATE;

[** Struct used to pass information in video posetdata to callback
*/
typedef struct

{

string fileName; I
File name

VideoWriter fileHandle; 1
File handle to write buffer data to.

VideoWriter fileHandle2; Il File
handle to write buffer data to.

RASPIVID_STATE *pstate; "
pointer to our state in case required in callback

int abort;

/Il Set to 1 in callback if an error occurs teeatpt to abort the capture

Mat image;

/Il Main image captured

Mat image2;

/Il Image processed in opencCV

int humanDetected,; 1
Number of consecutive frames with human detected

int noHumanDetected; 1
Number of consecutive frames without human

int framesRecorded; I
Number of frames recorded

bool uploading;

/Il Control if any file is being uploaded.

VCOS_SEMAPHORE_T complete_semaphore;
} PORT_USERDATA;

/**

* Assign a default set of parameters to the stass@d in

*

* @param state Pointer to state structure to asifpults to

*/
static void default_status(RASPIVID_STATE *state)
{

if (Istate)

{

vcos_assert(0);
return;

}

/I Default everything to zero
memset(state, 0, sizeof(RASPIVID_STATE));

/ Now set anything non-zero

27

state->timeout = 5000; // 5s delay before iakage

state->width = 1280; // Default to 1080p

state->height = 720;

state->bitrate = 17000000; // This is a decenadébitrate for 1080p
state->framerate = VIDEO_FRAME_RATE_NUM,;
state->intraperiod = 0; // Not set

state->verbose = 0;

state->demoMode = 0;

state->demolnterval = 250; // ms

/I Setup preview window defaults
raspipreview_set_defaults(&state->preview_paramgte

/I Set up the camera_parameters to default
raspicamcontrol_set defaults(&state->camera_pdes)e

}
/**

* puffer header callback function for camera cohtr

*

* Callback will dump buffer data to the specifitef

*

* @param port Pointer to port from which callbaclgmated
* @param buffer mmal buffer header pointer

*/

static void camera_control_callback(MMAL_PORT_T o
MMAL_BUFFER_HEADER_T *buffer)

{
MMAL_BUFFER_HEADER_T *new_buffer;

PORT_USERDATA * userdata = (PORT_USERDATA *) pouserdata;

RASPIVID_STATE *pstate = userdata->pstate;

int w = userdata->pstate->width;
int h = userdata->pstate->height;

Mat py = Mat(Size(w, h), CV_8UC1); /'Y componeritY UV

1420 frame
mmal_buffer_header_mem_lock(buffer);

memcpy(userdata->image.data, buffer->data, w * h)// read Y

userdata->framesRecorded++;

/I Check if the video didn't record humans infing 3 seconds

if(luserdata->framesRecorded > 4 && userdata->fisiRezorded < pstate-

>maxLength && userdata->humanDetected < pstate-secutiveHumans)

{

/lremove(userdata->fileName.c_str());

28

//system("poweroff");
/lcout<<"No humans on start\n";
}
/I Check if the video is less then the maximurgtBrand didn't have human in
the pre determinated time
else if(userdata->framesRecorded < pstate->maxhefa§ userdata-
>noHumanDetected >= pstate->consecutiveNoHumans)

{
/Istop recording and power off
lIsystem("poweroff");
/[cout<<"No humans for a while\n";
}

/I Check if the video has reached the maximumtleagd open a new one
else if(userdata->framesRecorded >= pstate->magth¢n

{

/luserdata->fileName = to_string(rand()) + ".avi"

/luserdata->fileHandle.open(userdata->fileName,
CV_FOURCC(D''T,'V','’X"), 3, userdata->image.gjzéalse);

/luserdata->framesRecorded = 0;

/[cout<<"Long enough to create a new file\n";

mmal_buffer_header_mem_unlock(buffer);

if (vcos_semaphore_trywait(&(userdata->completeagghore)) !=
VCOS_SUCCESS) {
vcos_semaphore_post(&(userdata->complete _senmaphor
}

mmal_buffer_header_release(buffer);

/[and send one back to the port (if still open)
if (port->is_enabled) {
MMAL_STATUS T status;

new_buffer = mmal_queue_get(pstate->video_pooiexq);

if (new_buffer)
status = mmal_port_send_buffer(port, new_buffer);

if 'new_buffer || status '= MMAL_SUCCESS)
printf("Unable to return a buffer to the videorfin");

}

/**

* Create the camera component, set up its ports

*

* @param state Pointer to state control struct

29

*

* @return MMAL_SUCCESS if all OK, something elsdnetwise
*
*/
static MMAL_STATUS T create_camera_component(RASBI\STATE *state)
{
MMAL_COMPONENT_T *camera = 0;
MMAL_ES_FORMAT_T *format;
MMAL_PORT_T *preview_port = NULL, *video_port = NLL, *still_port =
NULL;
MMAL_STATUS T status;

[* Create the component */

status =
mmal_component_create(MMAL_COMPONENT_DEFAULT_CAMERA
&camera);

if (status '= MMAL_SUCCESS)

{
vcos_log_error("Failed to create camera compdjient
goto error;

}

if (lcamera->output_num)

{
status = MMAL_ENOSYS;
vcos_log_error("Camera doesn't have output ports”
goto error;

}

preview_port = camera->outputfMMAL_CAMERA_PREVIEWORT];
video_port = camera->outputMMAL_CAMERA_VIDEO_PORT
still_port = camera->outputfMMAL_CAMERA_CAPTURE_RJ];

/I set up the camera configuration

{
MMAL_PARAMETER_CAMERA_CONFIG_T cam_config =

{

{ MMAL_PARAMETER_CAMERA_CONFIG,
sizeof(cam_config) },

.max_stills_w = state->width,

.max_stills_h = state->height,

Stills_yuv422 = 0,

.one_shot_stills =0,

.max_preview_video_w = state->width,

.max_preview_video_h = state->height,

.num_preview_video_frames = 3,

.stills_capture_circular_buffer_height = 0,

fast_preview_resume =0,

30

.use_stc_timestamp =
MMAL_PARAM_TIMESTAMP_MODE_RESET_STC
|3
mmal_port_parameter_set(camera->control, &canfig.tlr);

}

/I Now set up the port formats

/I Set the encode format on the video port

format = video_port->format;

format->encoding = MMAL_ENCODING_JPEG;
format->es->video.width = state->width;
format->es->video.height = state->height;
format->es->video.crop.x = 0;
format->es->video.crop.y = 0;
format->es->video.crop.width = state->width;
format->es->video.crop.height = state->height;
format->es->video.frame_rate.num = state->franeerat
format->es->video.frame_rate.den = VIDEO_FRAME_HADEN;

video_port->buffer_size = video_port->buffer_simrommended;

if (video_port->buffer_size < video_port->buffeizes _min)
video_port->buffer_size = video_port->buffer_siaen;

video_port->buffer_num = video_port->buffer _nuncammended,

if (video_port->buffer_num < video_port->buffer mumin)
video_port->buffer_num = video_port->buffer_numnni

status = mmal_port_format_commit(video_port);

if (status '= MMAL_SUCCESS)
{

vcos_log_error("camera video format couldn't &&)s
goto error;

}

[* Enable component */
status = mmal_component_enable(camera);

if (status != MMAL_SUCCESS)
{

vcos_log_error("camera component couldn't be leda)y
goto error;

}

/I crate pool from camera still port
if((state->video_pool = mmal_port_pool_create(adgort, video_port-
>puffer_num, video_port->buffer_size)) == NULL)

{

31

vcos_log_error("Error creating video pool\n™);
goto error;

}

raspicamcontrol_set_all_parameters(camera, &stedeaera_parameters);
state->camera_component = camera;

if (state->verbose)
fprintf(stderr, "Camera component done\n");

return status;

error:
if (camera)
mmal_component_destroy(camera);
return status;

}

/**

* Destroy the camera component

*

* @param state Pointer to state control struct

*

*/

static void destroy_camera_component(RASPIVID _STASiate)
{

if (state->camera_component)

{
mmal_component_destroy(state->camera_component);
state->camera_component = NULL,;

}

/**

* Connect two specific ports together

*

* @param output_port Pointer the output port

* @param input_port Pointer the input port

* @param Pointer to a mmal connection pointer,sigmed if function successful
* @return Returns a MMAL_STATUS T giving result@beration

*

*/

static MMAL_STATUS_T connect_ports(MMAL_PORT _T *quit_port,
MMAL_PORT_T *input_port, MMAL_CONNECTION_T **connetton)

{
MMAL_STATUS_T status;

32

status = mmal_connection_create(connection, oupout, input_port,

MMAL_CONNECTION_FLAG_TUNNELLING |
MMAL_CONNECTION_FLAG_ALLOCATION_ON_INPUT);,

if (status == MMAL_SUCCESS)

{
status = mmal_connection_enable(*connection);
if (status '= MMAL_SUCCESS)
mmal_connection_destroy(*connection);
}
return status;
}
/**

* Checks if specified port is valid and enabledrthlisables it

*

* @param port Pointer the port
*

*/
static void check_disable_port(MMAL_PORT_T *port)

{
if (port && port->is_enabled)

mmal_port_disable(port);

}

/**

* Set the camera configuration

*

* @param camera Pointer the camera component

* @param params Parameters to be sent to the aamer
*

*/

int set_camera_parameters(MMAL_COMPONENT _T *cameoast
RASPICAM_CAMERA_PARAMETERS params)

{

int result;

result = raspicamcontrol_set_saturation(camexarps.saturation);
result += raspicamcontrol_set_sharpness(cameramgasharpness);
result += raspicamcontrol_set_contrast(camerarpsucontrast);
result += raspicamcontrol_set_brightness(cameunanps.brightness);
result += raspicamcontrol_set_ISO(camera, par&as;|

result += raspicamcontrol_set_video_stabilisatian{era,

params.videoStabilisation);

result += raspicamcontrol_set_exposure_compemgatimera,

params.exposureCompensation);

result += raspicamcontrol_set_exposure_mode(camera

params.exposureMode);

33

result += raspicamcontrol_set_metering_mode(camera
params.exposureMeterMode);

result += raspicamcontrol_set_awb_mode(cameranmmaawbMode);

result += raspicamcontrol_set_imageFX(camera,mpsuwienageEffect);

result += raspicamcontrol_set_colourFX(camera,r&pes.colourEffects);

result += raspicamcontrol_set_rotation(cameraampatrrotation);

result += raspicamcontrol_set_flips(camera, parhfins, params.vflip);

return result;

}

/**

* main

*/

int main(int argc, const char **argv)

{

/I Our main data storage vessel..
RASPIVID_STATE state;

MMAL_STATUS T status = MMAL_SUCCESS;
MMAL_PORT_T *camera_preview_port = NULL;
MMAL_PORT _T *camera_video_port = NULL;
MMAL_PORT_T *camera_still_port = NULL;
MMAL_PORT _T *preview_input_port = NULL,;
bcm_host_init();

Il Register our application with the logging syste
vcos_log_register("RaspiVid", VCOS_LOG_CATEGORY);

default_status(&state);

/l OK, we have a nice set of parameters. Now geiur components
/I We have two components. Camera and Preview

if ((status = create_camera_component(&stateNIMAL SUCCESS)
{

}

else if ((status = raspipreview_create(&state.jgw@vparameters)) !=
MMAL_SUCCESS)

vcos_log_error("%s: Failed to create camera caorapty, _ func__);

{ vcos_log_error("%s: Failed to create preview congmt”, _ func_);
destroy_camera_component(&state);

}

else

{

PORT_USERDATA callback data,;

srand (time(NULL));

34

/Isize of the image processed by the OpenCV
float scale = 3;

state.opencv_width = 1280 / scale;
state.opencv_height = 720 / scale;

float scale_width = 1280 / state.opencv_width;
float scale_height = 720 / state.opencv_height;

[* setup opencv */

callback _data.image = Mat(Size(state.width, dtaight), CV_8UC1);

callback_data.image2 = Mat(Size(state.widthestaight),
CV_8UC1);

//set up video file

callback_data.fileName = to_string(rand()) + I"av

VideoWriter record(callback _data.fileName,
CV_FOURCC(D''I,'V','X"), 2.5, callback data.inmeagize(), false);

VideoWriter record2("Demo_"+callback_data.fileNam
CV_FOURCC(D''T''V''X"), 2.5, Size(state.openexndth, state.opencv_height),
false);

callback_data.fileHandle = record;

callback_data.fileHandle2 = record2,;

if (state.verbose)
fprintf(stderr, "Starting component connectioagg\n”);

camera_preview_port = state.camera_component-
>outputfMMAL_CAMERA_PREVIEW_PORT];

camera_video_port = state.camera_component-
>outputfMMAL_CAMERA_VIDEO_PORT];

camera_still_port = state.camera_component-
>outputfMMAL_CAMERA_CAPTURE_PORT];

preview_input_port = state.preview_parameteesipw_component-
>input[0];

RASPICAM_CAMERA_PARAMETERS paramsCamera,;

paramsCamera.sharpness = 0;

paramsCamera.contrast = O;

paramsCamera.brightness = 50;

paramsCamera.saturation = 0;

paramsCamera.lSO = 400;

paramsCamera.videoStabilisation = 0;

paramsCamera.exposureCompensation = 0;

paramsCamera.exposureMode =
MMAL_PARAM_EXPOSUREMODE_AUTO;

paramsCamera.exposureMeterMode =
MMAL_PARAM_EXPOSUREMETERINGMODE_AVERAGE;

paramsCamera.awbMode = MMAL_PARAM_AWBMODE_OFF;

paramsCamera.imageEffect = MMAL_PARAM_IMAGEFX_NEGN

paramsCamera.colourEffects.enable = false;

35

paramsCamera.colourEffects.u = 128;
paramsCamera.colourEffects.v = 128;
paramsCamera.rotation = 180;
paramsCamera.hflip = paramsCamera.vflip = 0;

set_camera_parameters(state.camera_componentgzamera);
if (status == MMAL_SUCCESS)

{

I/l Set up our userdata - this is passed thouget callback
where we need the information.

callback data.pstate = &state;

callback data.abort = 0;

callback data.humanDetected = 0O;

callback_data.noHumanDetected = 0O;

callback data.uploading = false;

callback_data.framesRecorded = 0;

camera_video_port->userdata = (struct
MMAL_PORT_USERDATA T *)&callback_data;

// Enable the video port and tell it its callkdonction
status = mmal_port_enable(camera_video_port,
camera_control_callback);

if (status '= MMAL_SUCCESS)

{
vcos_log_error("Failed to setup video™);
goto error;
}
I/l Send all the buffers to the camera video port
{

int num = mmal_queue_length(state.video_pool-
>queue);
int q;

for (g = 0; g <num; g++)

{
MMAL_BUFFER_HEADER_T *buffer =
mmal_queue_get(state.video_pool->queue);

if (buffer) {
printf("Unable to get a required buffer %d
from pool queue\n”, q);

}

if (mmal_port_send_buffer(camera_video_port,
buffer) = MMAL_SUCCESS) {

36

printf("Unable to send a buffer to video
port (%d)\n", q);

}

//Start image capture
if (mmal_port_parameter_set_boolean(camera_viole«,
MMAL_PARAMETER_CAPTURE, 1) = MMAL_SUCCESS)

{
}

vcos_semaphore_create(&callback data.completes®ore,
"mmal_opencv_demo-sem", 0);
int opencv_frames = 0;

goto error;

//Background subtraction variables
BackgroundSubtractorMOG2 bg;
bg.set("detectShadows", true);

//Configuration parameters from the configunatiibe
int dilate_n = 5;
//INumber of Dialtes
int erode_n =1;
//INumber of Erodes
state.maxLength = 900; /110
minutes of video approximately (seconds * 3)
state.consecutiveHumans = 1;
state.consecutiveNoHumans = 45; //15 seconds
without human on the scene (seconds * 3)

[IVariables of execution
bool firstRead = false;
bool exposure = false;

while (1) {
if
(vcos_semaphore_wait(&(callback_data.complete_shorap) ==
VCOS_SUCCESS) {
opencv_frames++;

/[Turn off exposure after the initialization
if(opencv_frames == 2 && exposure == false)

{
paramsCamera.exposureMode =
MMAL_PARAM_EXPOSUREMODE_OFF,;

set_camera_parameters(state.camera_componemhS@&amera);
exposure = true;

37

}

//Read configuration file
if(opencv_frames >=
OPENCV_CONFIG_FRAMES || firstRead == false)

string line="";
ifstream file;

file.open("config");
if (ffile.is_open())
{

cout<<"Error opening
configuration file\n";

}
while(!file.eof())
{

string parameter;
string value;

getline(file, line);
if(line.length()>=3)
{

parameter =
line.substr(0,line.find('="));
value =
line.substr(line.find('=")+1);
if(parameter == "dilate_n")
L
int aux;
istringstream (
value) >> aux;
dilate_n=aux;

else if(parameter ==

"erode_n")
L
int aux;
istringstream (
value) >> aux;
erode_n=aux;
}
else if(parameter ==
"maxLength")
{

int aux;
istringstream (
value) >> aux;

38

state.maxLength=aux;

}
else if(parameter ==
"consecutiveHumans")
L
int aux;
istringstream (
value) >> aux;
state.consecutiveHumans=aux;
}
else if(parameter ==
"consecutiveNoHumans")
{ .
int aux;
istringstream (
value) >> aux;
state.consecutiveNoHumans=aux;
}
}
}
file.close();
if('firstRead)
firstRead = true;
else

opencv_frames = 0;

}

//IResizes the userdata.image and saves on
userdata.image?2 with the size of userdata.image2

Mat aux;

resize(callback data.image, aux,
Size(state.opencv_width, state.opencv_height), GM INTER_LINEAR);

//IBG Subtract
Mat fore;
bg.operator() (aux,fore);

//IMorphological transformations
erode(fore, fore, Mat(), Point(-1,-1), erodg_n
dilate(fore, fore, Mat(), Point(-1,-1), dilate);

/IFind contours
vector<vector<cv::Point> > contours;

findContours(fore, // binary input image
contours, // vector of vectors of points

39

external contours

contours

boundingRect(contoursi]);

the width

Cout<<"HUMANNNNNN";

CV_RETR_EXTERNAL, // retrieve only
CV_CHAIN_APPROX_SIMPLE); // aproximate
/IVerify if the contour is a human

int human = 0;
for(int i=0;i < contours.size();i++)

{
double arc = arcLength(contours]i], true);
cout<<arc<<"\n";
if(arc > 100)
{
/[Apply bounding box
Rect body i =
/lcheck if the height is bigger than
if(body_i.height > body_i.width)
{
rectangle(aux,
body i,
Scalar(0,255,255),
2
);
human++;
}
}
}

/IAdd human detected
if(human > 0)

{

callback_data.humanDetected++;
callback _data.noHumanDetected = 0;

cout<<"Humans

detected:"<<callback_data.humanDetected;

}

//Add human not detect

else

{
callback _data.humanDetected = 0;
callback_data.noHumanDetected++;

}

//Demo

callback_data.fileHandle2 << aux;

40

//Generate video in grey scale.
callback_data.fileHandle <<
callback _data.image;

}
}
}
else
{
//mmal_status_to_int(status);
vcos_log_error("%s: Failed to connect camernaréview",
__func_);
}
error:
fprintf(stderr, "Close down completed");
}
return O;

41

