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RESUMO

A detec�c~ao e�caz de anomalias em v��deos de vigilância em diversos cen�arios �e

um grande desa�o em Vis~ao Computacional. Esse trabalho prop~oe uma aborda-

gem de subtra�c~ao de background baseada em redes neurais residuais, uma recente

t�ecnica de Deep Learning, capaz de detectar m�ultiplos objetos de tamanhos diferen-

tes atrav�es da segmenta�c~ao individual e simultânea dos pixels. O algoritmo recebe

como entrada uma imagem de referência (sem anomalia) e uma de alvo, que devem

estar temporalmente alinhadas, e computa o mapa de segmenta�c~ao com a mesma

resolu�c~ao da imagem de entrada. Experimentos mostram desempenho competitivo

na base de dados analisada, assim como capacidade de processamento em tempo

real.

Palavras-Chave: aprendizado profundo, redes residuais, subtra�c~ao de fundo, seg-

menta�c~ao, detec�c~ao de anomalia, vigilância, tempo real.
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ABSTRACT

E�cient anomaly detection in surveillance videos across diverse environments rep-

resents a major challenge in Computer Vision. This work proposes a background

subtraction approach based on the recent deep learning technique of residual neural

networks capable of detecting multiple objects of di�erent sizes by pixel-wise fore-

ground segmentation. The proposed algorithm takes as input a reference (anomaly-

free) and a target frame, which should be temporally aligned, and outputs a segmen-

tation map of same spatial resolution. Experiments show competitive performance

in the studied dataset, as well as real-time capability.

Keywords: deep learning, ResNet, residual networks, background subtraction,

segmentation, anomaly detection, surveillance, real-time.
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Chapter 1

Introduction

1.1 Theme

The present work deals with the foreground segmentation and anomalous object

detection in surveillance videos. It focuses on machine learning, a branch of arti�-

cial intelligence, to perform automatically this task. More precisely, it investigates

the use of deep learning methods to perform pixel-wise foreground segmentation in

target frames by comparing them to reference images.

1.2 Scope

The present work is mainly concerned with analyzing existing feed-forward neu-

ral network architectures and how they may apply to the foreground segmentation

problem in a known scenario. Hence, it does not bother to classify the objects nor

the scenarios according to preset labels (e.g dog, bottle, backpack, park, factory).

Furthermore, instance segmentation1 is not discussed here either, only pixel-wise

segmentation2 is considered.

1It extends image segmentation to include the notion of di�erent instances of the same class,

that is, it is aware of each object of each class individually.

2The task of assigning a label to each pixel of an image, thus dividing the image into separate

categories.
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1.3 Proposal and objectives

Background subtraction is embedded in a wide range of image processing appli-

cations, such as surveillance and tracking, since it is frequently employed as one of

the �rst steps in computer vision frameworks [2]. However, designing a system that

can handle diverse environmental conditions still is a major challenge in this area.

Furthermore, those background subtraction methods have been almost solely devel-

oped for static cameras, consequently, they do not perform satisfactorily in videos

where there is translational or rotational motion.

On the other hand, deep learning presents itself as a powerful tool to automatically

learn and extract abstract representations of data by building a hierarchy of features

along the network, from simple low-level representations to task-speci�c high-level

ones. The deep learning approach has led to breakthroughs in image classi�cation,

segmentation, and object detection, among others tasks, thus raising the question

of how far it can be pushed. Hence, this project takes upon itself the mission of

being one of the �rst to combine both deep learning and background subtraction to

achieve proper pixel-wise foreground segmentation, aspiring to carry the excellent

results shown in other domains over to the one at hand.

The main objective is to adapt famous and well-performing deep learning network

architectures to predict the pixel-wise foreground segmentation of a given input

image. Speci�cally, the current work aims to:

1. Propose and discuss di�erent adaptations to existing architectures that were

primarily designed for solving other problems;

2. Evaluate the performance of such networks and compare to other existing

foreground segmentation methods.

1.4 Methodology

The work will port several deep learning networks acclaimed within their applica-

tion �elds to the numeric computing framework Torch7 [3]. After transforming archi-

tectures originally designed for image classi�cation and multi-label semantic segmen-
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tation into models capable of outputing a dense pixel-wise probability, the models

will be trained in a set of video frames taken from the change detection database

[4], a publicly available database speci�cally designed for background/foreground

segmentation.

Several modi�cation schemes shall be further experimented with according to in-

spirations of other well-performing techniques in deep learning, aiming to maximize

the speci�city of the network. All these di�erent architectures will then be tested

against a validation set, that is, another set of video frames with no overlap what-

soever with the training one.

The approach to be adopted throughout the project is similar to that adhered

by Brahams et al [1], where they use as input to a deep neural network a two-

channel image with one channel being a simple background model and the other

the grayscale version of the image to be analyzed. Although some have opted for

di�erent frameworks [5], we feel that these deviate from the beauty of deep learning

in that they break from the end-to-end concept.

The success of this work will be assessed by verifying that the proposed network

is at least competitive with [1] while being faster and more e�cient. Also, an

investigation of whether it is also e�ective in more challenging videos [6], i.e. an

industrial plant footage from a moving camera in a closed circuit, is possible.

1.5 Text structure

Chapter 2 brie
y mentions the role of machine learning in computer science and

provides a historical overview of neural networks. Then it introduces the basic

notions of deep learning so that the reader can comprehend what has been developed

in this work.

Chapter 3 reviews the related work in video surveillance and image segmentation

found in literature, indicating the di�erences between the developed method and

other approaches and how they motivated this project.

3



The video databases employed for training, validating and evaluating the con-

structed algorithms are presented in Chapter 4.

Chapter 5 discusses the deep learning architectures used along with minute ex-

planations of changes made and their motivation. It also describes how video data

is divided and employed for training and validation.

Next, Chapter 6 shows the results obtained through the di�erent architectures

examined, reasoning about the attained performances and the disparity among them.

Finally, Chapter 7 summarizes the work done and debates about its bene�ts,

ending with considerations about possible future works and axes of research that

can be undertaken in order to improve results and foreground segmentation with

deep learning in general.

4



Chapter 2

Theoretical foundations

This chapter starts with a brief description of the computer science sub�eld de-

voted to solve real-world problems by making data-driven decisions, the machine

learning domain.

Secondly, it presents a historical overview of arti�cial neural networks (ANN)

followed by explanation of concepts. Then, it treats the more recent subject of deep

learning along with the fundamental bricks employed in such approach.

Finally, it discusses Residual Networks at length, the convolutional neural net-

work (CNN) architecture family of choice for the present system, highlighting their

advantages.

2.1 Machine learning

Arti�cial Intelligence (AI) is the Computer Science �eld that aims to produce a

machine capable of perceiving its environment and interacting with it purposefully

to attain a goal. Experience suggests that AI obtains better results by constructing

their own knowledge based on data. The AI branch devoted to the study and

construction of algorithms that can learn from and make predictions on data is

called Machine Learning (ML). According to [7], ML is the only viable approach to

building AI systems that can operate in complicated, real-world environments.

5



The objective of an ML algorithm is to, given input data X, predict its output

by employing a mapping function which is assumed to be parameterized. This

mapping is found by going through training samples that belong to the training set

and latter evaluated on new unseen examples which forms the testing set. Hence,

the performance of those algorithms will depend upon the representation of the

data they are given. Each of those representations is called a feature and ML must

correctly correlate them to the possible outcomes. A very basic ML algorithm but

yet strikingly present on daily life is the naive Bayes approach, which is a key

method in �ltering spam e-mail [8].

Machine learning can be divided into three main categories according to the learn-

ing process, i.e. how the training occurs:

� Supervised learning: Both input samples and their correct outputs are

available. The goal is to learn a general function that maps inputs to outputs.

� Unsupervised learning: There is no labeled output, the algorithm should

unveil the underlying structure of the input by itself.

� Reinforcement learning: There are not input/output pairs either, but

rather rewards from the dynamic environment with which the algorithm in-

teracts in order to achieve a goal.

2.2 Deep learning

2.2.1 Motivation

As mentioned previously in Section 2.1, a great number of AI tasks can be easily

solved if the correct set of features is given. Nevertheless, for most tasks knowing

which features to extract is not a trivial matter, in fact it requires a great deal of

domain knowledge and insight.

One approach to overcome this barrier is to grasp through machine learning the

representation of data. This is known as representation learning and often results

in much better performance than hand-crafted representations.

6



However, even then, extracting abstract features may be challenging since pro-

found comprehension of the data is frequently needed. This is where deep learning

excels at: it introduces representations that are built upon simpler ones, going from

bottom up. By learning to represent the world as a nested hierarchy of concepts, it

achieves unprecedented 
exibility and performance.

Naturally, many deep learning applications are highly pro�table and not surpris-

ingly many top technology companies have begun using it, e.g. Google, Microsoft,

Facebook, IBM, Baidu and NVIDIA.

As a side note, there is no threshold to a model to be considered deep. Instead,

deep learning should be considered the machine learning domain that employs a

much greater amount of explicitly learned concepts than traditional machine learning

models.

2.2.2 History

Arti�cial neural network history begins in 1943 with McCulloch-Pitts neuroscience-

based linear neuron model [9] whose weights had to be manually set. Only in the

late 1950s did Rosenblatt’s perceptron neuron arise, capable of learning the weights

for each output category by input samples. The goal was to obtain a structured way

to solve general learning problems.

However, all those models were linear and su�ered from numerous drawbacks.

Quite remarkable was the fact that no model could learn the simple XOR function

which heavily contributed to the NN’s �rst disappearance.

It was not until the 1980s that ANNs were rediscovered under the central idea that

learning may be handled by combining several small simple units together whether

they are neurons in human brain or units in computational models. While in this

second wave, the back-propagation algorithm was successfully transported from the

control theory domain to ML [10] and it still is by far the most used algorithm for

training (see Section 2.2.6 for detailed explanation).

7



Nonetheless, neural networks had several problems: a large number of parameters

to optimize, absence of large datasets to train with, low computational power at the

time. All of this culminated in over�tting during training, poor performance during

testing and in really slow training even for a small net. Thus, neural networks dove

back into oblivion in the mid-1990s.

The third and present wave has been triggered mainly by Geo�rey Hinton [11]

who demonstrated how to separately pre-train each layer of a speci�c type of ANN

and was able to achieve state-of-the-art results in 2006.

Systems, whether animals or computers, become more intelligent as the number

of neurons working together increases. A small set of neuron units is not particularly

useful. Nowadays, the computational resources available1 allow running much larger

models [12] in a feasible amount of time.

Moreover, the age of Big Data has given enormously more data to construct

datasets with and feed to learning algorithms [7]. As a consequence, the performance

attainable by machine learning has soared.

Only in 2012, deep learning started to be noticed by the computer vision commu-

nity after [13] proposed the deep learning architecture Alexnet, which won one of

the most important challenges in computer vision, the ImageNet Large Scale Visual

Recognition Challenge (ILSVRC) and outperformed the runner-up by an error rate

more than 10% lower.

2.2.3 The neuron model and the classical MLP

In neural networks, a single computation unit is called a neuron. Similar to the

biological neuron, an arti�cial one takes in multiple input signals from its dendrites

and injects output signals onto its axon which will further branch and connect to

1As follows Moore’s law, much faster CPUs are available, but beyond that General Purpose

Graphics Processing Units (GPGPU) allow highly parallel computing and are the leading tech-

nology for the purpose of training deep models. Furthermore, software libraries such as Torch,

Theano and Ca�e made fast prototyping, training and testing possible.

8
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Figure 2.2: Neurons in adjacent layers are fully pairwise connected. Neurons pertaining

to the same layer do not share any connection whatsoever.

tween neurons. Neurons pertaining to the same layer do not share any connection

whatsoever, as is shown in Fig. 2.2.

Evaluation of samples consists in inserting input data and propagating the result

through each layer of the MLP continuously until last one, whose result will be the

net output. This procedure is called feed-forward operation. A second operation

is the so-called backward-propagation in which the gradient of the error function

calculated on the correct output and the predicted one is propagated back to the

beginning of the network in order to update its parameters and teach the network.

Those two procedures are interleaved leading the net to learn the proper parameters

and correctly predict the output.

The universal approximation theorem [15] states that given any desired continuous

function f(x) and some �nite error � > 0, there exists a neural network g(x) with

one hidden layer capable of representing such function with error upper bounded by

�. That means that 8x; j f(x) � g(x) j< �. Simply put, a single layer network is

su�cient to represent any function with any desired degree of accuracy given that

the net is large enough.

Although seemingly powerful, in practice this statement is meaningless since there

is no guarantee that the training algorithm will learn that function, furthermore the

layer may become infeasibly large and may fail to generalize correctly. Generally,

the opposite approach is the best: deeper models reduce the number of required

10



units and reduce the generalization error as shown in [16]. Even though it has been

known for long that, in general, depth, regardless of width, does increase prediction

accuracy, not until very recently such approach was impractical. Only with the

computational capacity made available by cutting-edge GPUs, has the community

begun to speculate with such models.

2.2.4 Convolutional neural networks

The design of convolutional neural networks are based on the visual mechanism

of the brain, the visual cortex. Neuroscience has long been an active research �eld,

especially on the visual cortex, which corresponds to approximately 25% of the

human cortex.

The �rst model of circuits in the visual cortex comes from the research done

in cats’ cortex by Hubbel and Wiesel in [17]. They demonstrated that the visual

cortex is arranged retinotopically, that is, nearby cells in the cortex process nearby

regions of the visual �eld, which implies that information locality is preserved in the

processing stage. Moreover, cells are structured in a hierarchical manner so that

their activations progressively build up to more complex patterns.

One of the �rst attempts to imitate the visual cortex through code was Fukushima’s

Neocognitron [18]. It consisted of a layered architecture with several layers of local

receptive cells that processed small regions of the input followed by pooling opera-

tion2. This systematical structure was in accordance with what was known about

the visual cortex, just like Hubbel and Wiesel’s research had shown, locality was

preserved and hierarchically arranged.

After a long break, Yann LeCun takes upon the Neurocognitron’s design of 1980

and learns a similar architecture through back-propagation whose goal was to clas-

sify hand-written mail digits (Fig. 2.3). The LeNet-5 network [19] though still

small, employed convolutional layers (explained in convolutional in Section 2.2.5)

2The pooling operation basically performs a spatial down-sampling (Pooling in Section 2.2.5

further explains the pooling operation).
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Figure 2.3: The LeNet-5 network consists of 5 stacked layers. The �rst layers are

composed of alternating convolution and pooling layers. The three last layers are fully-

connected and are similar to the traditional MLP model. Between each convolution-

subsampling stage, there are several feature maps which are mappings of the original

image. Source: [19]

and the modular structure of Fukushima’s work, just as modern convolutional neural

networks. CNN is the most widely used network in computer vision applications.

Instead of employing matrix multiplication in all of its layers as the mapping

function, convolutional networks use, in at least one of the layers, convolutions to

obtain the mapping.

The output of each stage and, consequently, input of the next one is a set of

feature maps. That is, the features extracted from all the locations of the input by

that layer. Naturally, the feature maps for the �rst layer would be the image itself.

Generally, counting the number of layers is not done by counting the number of layers

per se, but instead by counting the number of stages of the net, i.e. convolutional

layer, non-linearity layer, and pooling layer, for the early layers and fully-connected

for the later ones (the Section 2.2.5 explains all above mentioned layers).

2.2.5 Layers

There are several di�erent types of layer one can use in a network architecture,

some of them have even been mentioned previously. In what follows, the most

important ones either in general or for this project will be succinctly explained.
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Convolutional. Convolution is a mathematical concept widely used in the Signal

Processing domain. It can be described mathematically for one dimension as

y[n] = (x � h)[n] =
X

k

x[n� k]h[k] : (2.3)

While the two-dimensional version including the convolution of 2D images with 2D

kernels will follow

y[n; m] = (x � h)[n; m] =
X

k

X

l

x[n� k; m� l]h[k; l] : (2.4)

In practice, a convolutional layer consists on sliding a kernel (or �lter, both will be

used interchangeably) on all possible positions of the input and computing the value

of each of those positions by calculating the Hadamard product between the kernel

and the corresponding region of the input (Fig. 2.4). An important observation is

that besides the two spatial dimensions, there are N feature maps and so the kernel

actually is a three-dimensional block with depth equal to the number N of maps.

As stated in [7], \convolution leverages three important ideas that can help im-

prove a machine learning system: sparse interactions, parameter sharing and equiv-

ariant representations". Those traits are inspired by biological systems as it was

discussed in Section 2.2.4.

Sparse connections means that each output neuron is only connected to a limited

number of input positions instead of the whole input data as in the MLP. Whilst

parameter sharing entails that the same parameters are used more than once in

the model, in the CNN context that amounts to employing the same kernel to

each position of the input. Consequently, a visual pattern which actives the �lter

may appear at di�erent locations of the input, hence this structure also leverages

translation invariance. Those concepts result in considerably smaller �lters, fewer

parameters, less memory usage and faster models.

The kernel size which determines the receptive �eld of the neuron is a hyper-

parameter as well as the number of �lters to use and their stride3. The number of

3Stride is the pixel-wise distance between two adjacent positions where the kernel is applied to.
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Although it may seem irrelevant, many convolutional layers stacked together can

reduce the image to the point of uselessness or at least poor �nal system perfor-

mance due to the great loss in information. Padding the input image prior to the

convolution leads to undesirable boundary e�ect, but can guarantee that the spatial

size will remain the same. Sometimes it will be convenient to pad the input volume

with zeros around the border. If on each input border P pixels are padded (P = 1

for the padding shown in Fig.2.4), then the spatial size of the output is determined

by:

F =
W �K + 2P

S
+ 1 : (2.5)

Among the di�erent types of padding, zero-padding which consists of attribut-

ing zero to the padded input pixels is the most common one in the deep learning

community.

Pooling. Pooling replaces the value of a small region with a statistic over that

region. As a result, it reduces the resolution of feature maps, increasing invariance

to small local translations and reducing sensitivity to distortions, both typically

within the local receptive �eld of the neuron. Therefore, it progressively decreases

the amount of parameters and compute in the net.

This approach is actually imposing a prior to the system by forcing the layer to

learn this invariance. If correct, it can signi�cantly increase the e�ciency of the

network. Anyhow, in most computer vision tasks that is the case.

The most common forms of pooling are max-pooling and average-pooling, the

former outputs the average of a rectangular region while the latter its maximum

value (Fig. 2.5). Normally, those regions do not overlap, the pooling �lter and its

stride are forced to be equal. Moreover, the pooling operation acts independently

on each feature map.

Activation. Each neuron can be interpreted as a detector for a certain visual

pattern that will �re proportionally to its activation function output. This is a

point-wise nonlinear function applied to all neurons of the input volume. This

15






