

Universidade Federal do Rio de Janeiro Escola Politécnica

UTILIZAÇÃO DA TECNOLOGIA BIM (BUILDING INFORMATION MODELING) INTEGRADO A PLANEJAMENTO 4D NA CONSTRUÇÃO CIVIL

Leandro Sander Müller

Projeto de Graduação apresentado ao Curso de Engenharia Civil da Escola Politécnica, Universidade Federal do Rio de Janeiro, como parte dos requisitos necessários à obtenção do título de Engenheiro.

Orientador: Assed Naked Haddad

Rio de Janeiro Março de 2015

UTILIZAÇÃO DA TECNOLOGIA BIM (BUILDING INFORMATION MODELING) INTEGRADO A PLANEJAMENTO 4D NA CONSTRUÇÃO CIVIL

Leandro Sander Müller

PROJETO DE GRADUAÇÃO SUBMETIDO AO CORPO DOCENTE DO CURSO DE ENGENHARIA CIVIL DA ESCOLA POLITÉCNICA DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE ENGENHEIRO CIVIL.

Examinada por:

Prof. Assed Naked Haddad, D.Sc., Orientador

Prof. Luiz Otavio Cocito de Araujo, D.Sc.

Prof.^a Ana Catarina Jorge Evangelista, D.Sc.

RIO DE JANEIRO, RJ – BRASIL MARÇO de 2015 Müller, Leandro Sander

Utilização da Tecnologia Bim (Building Information Modeling) Integrado a Planejamento 4D na Construção Civil/ Leandro Sander Müller. – Rio de Janeiro: UFRJ/ Escola Politécnica, 2015.

XII, 84. il.; 29,7 cm.

Orientador: Prof. Assed Naked Haddad

Projeto de Graduação – UFRJ/ Escola Politécnica/ Curso de Engenharia Civil, 2015.

Referências Bibliográficas: p. 67-68

Introdução. 2.Building Information Modeling
Conceituação.3. Integração com Planejamento 4D.
Desenvolvimento do Modelo Expositivo. 5.
Considerações Finais. 5. Referências Bibliográficas.
Naked Haddad, Assed II. Universidade Federal do Rio de Janeiro, Escola Politécnica, Curso de Engenharia
Civil. III. Utilização da Tecnologia Bim (Building Information Modeling) Integrado a Planejamento 4D na
Construção Civil.

DEDICATÓRIA

A minha família, nomeadamente minha mãe Sônia Sander e meu pai João Luiz Müller.

AGRADECIMENTOS

Agradeço a todo o apoio dado por minha família, especialmente àqueles que estiveram do meu lado a maior parte do tempo – minha mãe Sônia, meu pai João Luiz e meu irmão Fabrício. Sem essas pessoas maravilhosas junto a mim não teria chance de percorrer esse caminho da maneira que percorri.

Agradeço aos meus amigos que estiveram junto a mim nos momentos de aprendizado acadêmico e nas horas de lazer, sem os quais essa trajetória não teria o mesmo brilho.

Agradeço aos professores da Universidade Federal do Rio de Janeiro por proporcionarem o aprendizado de excelência que me permite conferir grau como Engenheiro.

Resumo do Projeto de Graduação apresentado à Escola Politécnica / UFRJ como parte dos requisitos necessários para a obtenção do grau de Engenheiro Civil.

Utilização da Tecnologia Bim (Building Information Modeling) Integrado a Planejamento 4D na Construção Civil

Leandro Sander Müller

Março/2015

Orientador: Assed Naked Haddad

Curso: Engenharia Civil

A engenharia vem se beneficiando do avanço da tecnologia computacional ao longo de muitos anos, de forma que cada ferramenta nova representa ganhos de produtividade e vantagens quanto a disponibilidade de armazenamento e processamento de informações. O cenário atual de ferramentas para modelagem 3D é completamente dominado pelo CAD, que é eficaz em sua tarefa de modelar espacialmente, mas peca no carregamento de informações paramétricas. Como alternativa, vem ganhando força a utilização de um novo conceito de software para modelagem, armazenamento e análise do modelo, o BIM. O objetivo deste trabalho é demonstrar algumas das vantagens do conceito BIM, tido por muitos como sucessor do CAD e que maneja com eficiência uma vasta gama de informações ligados ao projeto, e exemplificar a aplicação com um modelo expositivo.

Palavras chave: BIM, software, Building Information Modeling, modelagem 3D

Abstract of Undergraduate Project presented to POLI/UFRJ as a partial fulfillment of the requirements for the degree of Engineer.

UTILIZATION OF BIM (BUILDING INFORMATION MODELING) TECHNOLOGY INTEGRATED TO 4D PLANNING APPLIED IN CIVIL CONSTRUCTION

Leandro Sander Müller

March/2015

Advisor: Assed Naked Haddad

Course: Civil Engineering

Engineering has been benefiting from the advance in computing technology amidst the years now, being a fact that that every new tool represents a productivity increase and advantages in data storage and processing. The actual scenario of 3D modeling tools in Brazil is completely dominated by CAD, effective in spatial modeling but lacks the power to manage parametric information. As an alternative, a new concept of software has been gaining strength in the market, called BIM, that is able not only to model in 3D, but also carries parametric information and can analyze the project. The objective of this paper is to demonstrate some of the advantages of the BIM concept, and show an example of application in a project in manner to expose how the software handles the information.

Keywords: BIM, software, Building Information Modeling, 3D modeling

SUMÁRIO

1	INTRODUÇÃO		
	1.1	Motivação do estudo	13
	1.2	Abordagem e Objetivos	14
	1.3	Limitações	15
	1.4	Estrutura do Texto	16
2	BUIL	DING INFORMATION MODELING – CONCEITUAÇÃO	18
	2.1	Inovações: as diferenças essenciais	18
	2.2	Ferramentas	20
	2.2.1	Edificius	21
	2.2.2	Home Designer Suite	21
	2.2.3	Tekla Structures	22
	2.2.4	Vectorworks Architect	23
	2.2.5	ArchiCAD	25
	2.2.6	Revit	25
	2.3	Revit	26
	2.3.1	Funcionamento do software	26
	2.3.2	Famílias	27
	2.3.3	Schedules	30
	2.3.4	Análises do modelo	32
	2.3.5	Exportação de dados e integração entre programas	35
	2.3.6	Produtividade	35
3	INTE	GRAÇÃO COM PLANEJAMENTO – 4D	37
	3.1	Ferramentas utilizadas	38
	3.1.1	Microsoft Project	38

	3.1.2	Alimentação de dados para o planejamento		
	3.1.3	Alimentação de dados para o modelo	40	
	3.2	Navisworks Manage	40	
	3.3	Planejamento 5 D e 6D	42	
4 DESENV		ENVOLVIMENTO DO MODELO EXPOSITIVO	43	
	4.1	Descrição do empreendimento	43	
	4.2	Concepção inicial – uso do Home Designer Suite	43	
	4.2.1	Uso e características do programa	44	
	4.2.2	Desenvolvimento do projeto arquitetônico básico	46	
	4.3	Desenvolvimento do projeto em Revit	49	
	4.3.1	Lançamento das estruturas	49	
	4.3.2	Fechamento vertical	53	
	4.3.3	Sistemas prediais	55	
	4.3.4	Pisos e tetos	60	
	4.3.5	Acabamentos	61	
	4.3.6	Materiais e texturas	61	
	4.3.7	Renderização	62	
	4.3.8	Schedules e emissão dos projetos	63	
	4.4	Planejamento 4D	63	
5	CON	SIDERAÇÕES FINAIS	65	
	5.1	Problemas observados	65	
	5.2	Conclusão	66	
6	REFE	ERÊNCIAS BIBLIOGRÁFICAS	68	
ANE	XO I: PLANT	TA DE ARQUITETURA DO PAVIMENTO TÉRREO	70	
ANE	XO II: PLAN	TA DE ARQUITETURA DO PUC	71	
ANE	XO III: PLAN	ITA DE ARQUITETURA DOS PAVIMENTOS TIPO	72	
ANEXO IV: PROJETO ELÉTRICO DO PAVIMENTO TIPO73				
ANEXO V: SCHEDULE DE CÁLCULO NUMINOTÉCNICO74				

ANEXO VI: SCHEDULE DE ESPECIFICAÇÃO DOS CIRCUITOS	75
ANEXO VII: SCHEDULE DE CONFIGURAÇÃO DO PAINÉL DE DISTRIBUIÇÃO DA UNIDADES7	\S 76
ANEXO VIII: TAKEOFF DE DISPOSITIVOS DE ILUMINAÇÃO7	77
ANEXO XI: TAKEOFF DE JANELAS7	78
ANEXO XII: TAKEOFF DE PORTAS7	79
ANEXO XIII: RENDERIZAÇÃO DA FACHADA8	30
ANEXO XIV: RENDERIZAÇÃO DAS ESTRUTURAS8	31
ANEXO XV: ANÁLISE DA ILUMINAÇÃO EXTERIOR8	32
ANEXO XVI: RENDERIZAÇÃO DA PORTARIA8	33
ANEXO XVII: RENDERIZAÇÃO DA GARAGEM8	34
ANEXO XVIII: RENDERIZAÇÃO DO PUC8	35
ANEXO XX: RENDERIZAÇÃO DA COZINHA8	36
ANEXO XXI: CRONOGRAMA DE OBRA8	37
ANEXO XXII: TIMELAPSE DO PLANEJAMENTO 4D GERADO NO NAVISWORKS.9	93

LISTA DE FIGURAS

Figura 1 - Demonstração do auto alinhamento de janelas	20
Figura 2 - Interface do Edificius	21
Figura 3 - Interface Home Designer Suite	22
Figura 4 - Interface do Tekla Structure	23
Figura 5 – Interface do Vectorworks	24
Figura 6 - Renderização de alta qualidade no Vectorworks	24
Figura 7 - Interface ArchiCAD	25
Figura 8 - Interface do Revit	27
Figura 9 - Exemplo de família de paredes e seus diferentes tipos	29
Figura 10 - Hierarquia de elementos	29
Figura 11 - Categorias de schedules	30
Figura 12 - Opções de análise do modelo	32
Figura 13 - Análise estrutural	33
Figura 14 - Relatório visual da interferência entre objetos	34
Figura 15 - Interface do Microsoft Project	38
Figura 16 - Interface do Navisworks Manage	41
Figura 17 - Elementos construtivos do Home Designer Suite	44
Figura 18 - Início do Home Wizard	45
Figura 19 - Escolha de configurações do Home Wizard	45
Figura 20 - Arquitetura desenvolvida no Home Designer Suite	46
Figura 21 - Aviso de porta muito estreita	47
Figura 23 - Visualização 3D da sala de estar	48
Figura 22 - Distribuição do madeiramento gerado pelo Home Designer Suite	48
Figura 24 - Vista 3D humanizada da sala de estar	49
Figura 25 - Famílias de elementos estruturais - pilares	50
Figura 26 - Eixos de referência do modelo	51

Figura 27 - Estrutura do edifício	52
Figura 28 - Modelo para análise estrutural	52
Figura 29 - Configurações do tipo de parede com blocos de 14cm	53
Figura 30 - Edifício com alvenarias	54
Figura 31 - Parede cortina	55
Figura 32 - Elemento físico de equipamento elétrico	56
Figura 33 - Elemento anotativo de tomada a meia altura	57
Figura 34 - Elemento de conexão	57
Figura 35 - Janela de configuração de sistema elétrico	58
Figura 36 - Circuito da cozinha e painel de distribuição	59
Figura 37 - Configuração de camadas de contra piso de área impermeabilizada	60
Figura 38 - Propriedades de material - Concreto 35MPa	62
Figura 39 - Botões de importação de modelo (a) e cronograma (b)	64

1 INTRODUÇÃO

Nesse capítulo serão apresentados resumidamente questões pertinentes ao que levou ao autor escolher o tema abordado, com foco nos objetivos do estudo, limitações, a abordagem pelo qual foi conduzido o estudo e, ainda, será descrita a própria estrutura do projeto.

1.1 Motivação do estudo

A partir dos estudos praticados ao longo da trajetória na faculdade, em conjunto com a vivência durante mais de um ano e meio de estágio em obra de grande porte, pode se dizer que o fluxo de informações, essenciais e muitas vezes com espírito de urgência pode prejudicar o correto desenvolvimento físico e até financeiro de uma obra se não administrado corretamente.

Segundo o PMI (2013), em todas as etapas da obra, essencialmente a iniciação, planejamento, execução, monitoramento e controle, e a finalização são necessárias informações confiáveis e disponíveis. Na prática atual é comum ter diversas partes do projeto em separado: exemplificando mas não se atendo a somente isso, as disciplinas de arquitetura, estruturas, elétrica, hidráulica e incêndio sendo desenvolvidas por equipes diferentes em separado.

A não compatibilização desses projetos leva à necessidade de uma integração por outra equipe para que aí sim possa haver compatibilidade de execução em campo, fato que dispendia recursos humanos e mesmo de materiais e equipamentos quando se verifica a necessidade de fazer modificações em estruturas e componentes já prontos.

A tecnologia BIM oferece uma plataforma versátil em que toda essa integração ocorre em um mesmo modelo central, onde cada equipe pode alterar apenas seu escopo, cortando a etapa de compatibilização e evitando adequações posteriores.

O conceito de *Building Information Modeling*¹ também faz com que os componentes da equipe tenham acesso a informação muito mais rapidamente e com um grau de confiabilidade bastante alto, na verdade tanto quanto se queira.

Por ser uma ferramenta gráfica, o uso dessa tecnologia também facilita imensamente o entendimento geral do projeto como um todo, tanto no que tange à execução quanto ao planejamento das atividades. Na própria tela, é possível prever cenários quando aliado o modelo digital BIM com um cronograma do empreendimento. Essa integração é comumente referida no meio como planejamento 4D, referindo se às três dimensões espaciais do modelo 3D com a 4^a dimensão, o tempo.

Tal integração também será abordada durante o desenvolvimento do projeto.

1.2 Abordagem e Objetivos

Com o intuito de demostrar as diversas facilidades e contribuições à produtividade geradas pelo uso do BIM, foi feito um modelo no software Revit, da Autodesk, completamente do zero seguindo um estudo prévio realizado pelo próprio autor junto a outros alunos (estudo de massa objeto de um trabalho para uma das disciplinas cursadas durante a graduação).

Com essas informações básicas primeiramente foi feito um modelo simples para estudo inicial no Software Home Designer Suite, da Better Homes & Gardens, para que fossem desenvolvidos os projetos de arquitetura, estruturas, sistemas prediais em

¹ Modelagem da Informação de Construção, em tradução livre

nível de detalhamento compatível e suficiente ao objetivo do projeto já no Revit, muito mais robusto.

Após a modelagem 3D estar completa, foi elaborado o cronograma físico do empreendimento no software Microsoft Project, seguindo também preceitos e recomendações aprendidas ao longo do período de estudo acadêmico, junto à vivência de obra no setor de planejamento proporcionada pela realização do estágio.

Por último, foi feita a integração das duas esferas no software Navisworks, também da Autodesk tendo como resultado o cronograma conectado ao modelo – o supracitado planejamento 4D.

A partir disso, no decorrer do texto são demostradas as etapas, possibilidades, o funcionamento do software, as dificuldades, e os próprios conceitos intrínsecos a ele.

1.3 Limitações

Para demonstrar o desejado como descrito no capítulo anterior, não seria preciso um projeto executivo completo e detalhado, motivo pelo qual foi definido pelo próprio autor um nível de detalhamento do modelo 3D compatível com o objetivo.

Ainda, diversas ferramentas oferecidas pelo software não serão abordadas, dada sua vasta gama existente. As ferramentas de equipe especificamente não serão estudadas por se tratar de um projeto individual.

O nível de detalhamento, assim como os objetos de estudo dentro do escopo serão apresentados no decorrer no projeto.

Pode se considerar também a limitação da gama de softwares utilizados no estudo, dada a vasta gama de produtos de prateleira e customizados oferecidos no mercado. Nomeadamente, os utilizados aqui serão: Revit, da Autodesk e Home

Designer Suite, da Better Homes & Gardens, ambos softwares de modelagem 3D com uso de tecnologia BIM (com diferentes públicos alvo); Project, da Microsoft, software de planejamento com criação, gestão e controle de cronogramas de obras, e por último Navisworks, também da Autodesk, software que permite criar ou importar cronogramas, e integrar com modelos 3D importados de diversos softwares, nesse caso o Revit.

1.4 Estrutura do Texto

A demonstração da condução e execução do estudo, junto aos resultados obtidos será feita nos capítulos adiante de maneira que inicialmente, será feita uma conceituação do que é a tecnologia BIM, demonstrando o cenário atual, as diferenças desse cenário com o proposto pelo estudo, fazendo uma introdução inicial e citando os diversos softwares disponíveis no mercado.

A seguir, o foco será dado no software utilizado como pilar principal do estudo, o Revit, porém não se atendo a ele, passando pelo estudo inicial feito no Home Design Suite. Será explicado como o programa lida com as informações, o seu funcionamento, suas ferramentas, possibilidades de customização e questões referentes a sua implantação em um ambiente de obras.

No capítulo seguinte, o foco será no planejamento, com conceituações, premissas utilizadas nesse projeto, e demonstração das ferramentas, especificamente os softwares utilizados. Já será tratado também a própria integração cronograma – modelo 3D.

Após isso, finalmente será apresentado o resultado da modelagem, com a descrição do empreendimento, uma visão geral, será especificado e demostrado o nível de detalhamento do modelo. Ainda, haverá a apresentação do decorrer do projeto, com suas fases de modelagem, desenvolvimento, e a integração com o cronograma. Serão também expostos alguns problemas enfrentados no decorrer do estudo.

No último capítulo, será discutida a conclusão tirada do estudo, com as vantagens e desvantagens potenciais.

2 BUILDING INFORMATION MODELING – CONCEITUAÇÃO

Os conceitos aqui descritos começaram a aparecer por volta da década dos anos 1970, com a terminologia BIM vindo a aparecer cerca de 20 anos depois, levando mais 10 para se popularizar.

O conceito resume se em reunir todas as informações inerentes ao projeto em questão em um só modelo central, de onde poderão ser extraídas durante a construção ou podem servir como histórico após o projeto ser terminado.

Dentro desse único modelo estarão presentes informações de toda sorte: geometria, detalhes construtivos, especificações de componentes, quantitativos detalhados inclusive com preços e fornecedores, informações estruturais (de resistência, comportamento de materiais, armação das estruturas em concreto armado), eventuais divisões em fases da obra, entre outros.

Aspectos espaciais também podem ser incluídos, como posição, topografia, iluminação solar.

A própria construção de um modelo do projeto, aliado a fatores conhecidos pela equipe como por exemplo um cronograma, um agente externo, uma mudança de escopo entre outros, auxilia em muito a tomada de decisão por parte dos gestores, uma vez que as ferramentas permitem a criação e o estudo de diversos cenários cronológicos, financeiros, construtivos.

2.1 Inovações: as diferenças essenciais

Não é incomum ver o BIM como uma evolução do CAD. No entanto, essa evolução é muito mais que apenas mudar a forma com que um projeto é desenhado. No CAD, que é a forma de desenho mais comum nos projetos atualmente, o modelo é gerado a partir de vetorizações dos componentes, ou seja, conjuntos simples de linhas e curvas formando uma forma complexa, inclusive em três dimensões.

Na sua essência, as informações desses componentes podem estar presentes em forma de texto, ou espacialmente. Alguns módulos e customizações de software podem adicionar algumas funcionalidades, mas o conceito puro de CAD continua inalterado: é um desenho assistido pelo computador.

No BIM, a abordagem é diferente, pois lidamos com objetos, não com linhas. Esses objetos são parametrizados, e levam consigo diversas informações importantes, e está a cargo do criador e gerenciador decidir quais delas são relevantes e abastecer essas informações. O usuário pode inclusive criar seus próprios parâmetros.

Não apenas isso, nesses objetos está definido o modo de interagir com os vizinhos de forma a automatizar futuras alterações, já que o próprio software estará encarregado de adaptar todos aqueles elementos que estão de alguma forma ligados ao que sofreu modificações.

Um simples, mas bom exemplo é uma parede de alvenaria e suas janelas. Com apenas dois tipos de objeto, posso definir diversas informações: para a parede, tenho a espessura, altura, materiais, camadas, acabamento, fabricante dos componentes, a maneira com que é feito o acabamento argamassado, o detalhe de como será feito esse acabamento na região do vão da janela, propriedades térmicas, acústicas, e qualquer outro que se queira adicionar. Para as janelas, tenho a própria posição da janela, inclusive a posição relativa às outras janelas da parede (explicado na figura 1 – o cadeado significa que o alinhamento em relação às outras janelas será sempre aquele), o tamanho do vão acabado, os materiais, fabricante, preço, altura do peitoril, etc.

Figura 1 - Demonstração do auto alinhamento de janelas

Existe ainda uma estrutura organizacional lógica que organiza esses objetos em categorias, utilizações, tipos. Cada um desses elementos pode ser alterado e pode ter seu próprio arquivo externo, mas que está integrado e incorporado ao modelo central. Uma explicação prática será mostrada na próxima seção ao ser explicado especificamente como o Revit lida com esses elementos.

Outro proveito tirado dessa forma parametrizada de trabalhar é a geração dos documentos: a partir do modelo 3D completo, com não mais de cinco cliques é possível gerar uma planta 2D, e toda e qualquer alteração feita no modelo principal será automaticamente atualizada em todas as plantas, vistas, quantificações e etc. geradas a partir dele.

2.2 Ferramentas

Existem diversas ferramentas que utilizam esses conceitos, cada uma com suas particularidades, focos de atuação, público alvo e funcionalidades.

Desde ferramentas mais simples, até outras potentes e robustas, os diversos nichos são atendidos. Abaixo serão dados alguns exemplos de softwares com uma breve descrição:

2.2.1 Edificius

O Edificius é um programa produzido pela Acca Software que, segundo a fabricante, é comparável às ferramentas mais tradicionais de mercado.

O diferencial é certamente o modo com que o programa é cobrado, de modo que toda a modelagem pode ser feita de forma grátis, e o pagamento é feito a partir do momento que são necessárias impressões físicas do modelo (é cobrado um certo valor por folha imprimida) ou exportações para outros softwares, como de tabelas para o Microsoft Office, ou do próprio modelo para formato CAD. Sua interface pode ser observada na figura 2.

Figura 2 - Interface do Edificius

2.2.2Home Designer Suite

A empresa que distribui do software, a Better Homes & Gardens, funciona no ramo da arquitetura com publicações de revistas, venda de mobiliário e acessórios entre outros. Por esse motivo o público alvo não é uma equipe técnica especializada,

Fonte: ACCA software S.p.A., 2015

mas sim um usuário geralmente com pouca experiência que quer construir sua própria casa.

O programa foi desenvolvido pela empresa Chief Architect, e tem uma interface (figura 3) simples, intuitiva e fácil de ser utilizada, mas não oferece ferramentas mais avançadas presentes nos demais.

Exatamente por ser de fácil manuseio, e para demonstrar a versatilidade e facilidade do uso do BIM, esse software foi utilizado de forma preliminar para a concepção da arquitetura de uma unidade do edifício estudado, fato que será demonstrado mais adiante no capítulo 4.

Figura 3 - Interface Home Designer Suite

2.2.3Tekla Structures

Software mais voltado para as próprias estruturas do edifício, principalmente quando estruturas metálicas. Possui integração direta com diversos outros programas de análise estrutural.

Figura 4 - Interface do Tekla Structure

Fonte: Tekla, 2015

2.2.4Vectorworks Architect

Mais ligado a arquitetura e ao próprio design, o Vectorworks Architect é um produto derivado do Vectorworks da Nemetschek, que na sua versão original funciona como software de design gráfico não específico para engenharia civil. No entanto, o Architect foi desenvolvido pensando na utilização de BIM e possui diversas ferramentas de alto nível.

Figura 5 – Interface do Vectorworks

Fonte: Nemetschek, 2015

Um dos seus destaques é exatamente o poder de processamento gráfico,

com efeitos visuais de alto padrão, como pode ser observado na figura 6:

Figura 6 - Renderização de alta qualidade no Vectorworks

Fonte: Nemetschek, 2015

2.2.5ArchiCAD

Software desenvolvido pela Graphisoft, bastante difundido e com gama de ferramentas bastante variada. A interface pode ser observada na figura 7.

Figura 7 - Interface ArchiCAD

Fonte: Graphisoft, 2015

2.2.6Revit

Ferramenta utilizada para desenvolvimento do projeto. Fabricado pela Autodesk, mesma fabricante do já líder e mais difundido software de CAD – o AutoCAD – desponta mais uma vez como o programa mais utilizado para utilização da plataforma BIM.

Suas características, bem como todo o escopo de utilização será abordado no capítulo 3.

2.3 Revit

A ferramenta escolhida entre as diversas demonstradas foi o Revit. A escolha foi motivada pela disciplina realizada na própria faculdade, *BIM 1,* onde foram expostos diversos pontos que motivaram o autor a procurar mais sobre o tema e se aprofundar no assunto, e a ferramenta utilizada no curso foi o próprio.

A segunda motivação esteve presente no ambiente onde foi realizado o estágio, onde por mais que não se tenha adotado efetivamente o Revit, houve contato com diversos profissionais que mostraram um pouco de sua experiência e motivaram o estudo realizado.

Ainda, a escolha foi baseada na robustez do programa, nas suas características e possibilidades que ele proporciona. A própria familiaridade com outro software da empresa, o AutoCAD, motivou a escolha.

Mais uma vez, citando a experiência do estágio realizado no setor de planejamento de uma grande obra, surgiu a ideia de integrar o modelo com um cronograma e elevar a experiência BIM para um planejamento 4D. Essa integração foi apresentada por colegas dentro do ambiente do software Navisworks, também da Autodesk. Toda essa familiaridade com a fabricante contribuiu com a escolha.

2.3.1 Funcionamento do software

Ao criar um novo projeto, terá de ser carregado um *template*, onde estarão algumas configurações e elementos básicos, como por exemplo simbologia, famílias de objetos (explicados a seguir), algumas vistas básicas, entre outros. A partir daí, a interface (figura 8) será basicamente como um canteiro onde vão se colocando os elementos construtivos

Figura 8 - Interface do Revit

A esquerda pode se observar a estrutura organizacional inicial dos elementos do arquivo. Alguns elementos já podem ser vistos como *Floor Plans* (plantas), *Sections* (cortes), *Schedules* (tabelas geradas pelo próprio Revit), *Sheets* (Folhas, para impressão), e *Families* (famílias). Essas últimas são elementos essenciais para o modelo.

2.3.2Famílias

As famílias, em suma, são os elementos virtuais que constituem o modelo. São elas também que controlam algumas configurações dos *schedules,* elementos anotativos para representação gráfica, e configurações de sistema, entre outros. Segundo o manual fornecido pela própria fabricante, uma família é um grupo de elementos com um conjunto de propriedades, chamadas parâmetros, e um objeto gráfico relacionado, em tradução livre do inglês.

Já existem diversos pacotes *on the box* de famílias, instalados junto ao software, adaptados aos diversos países onde a Autodesk atua. Mais que isso, diversas empresas são especializadas na criação e distribuição, paga ou não, de elementos,

inclusive sendo contratadas pelas próprias empresas fabricantes interessadas em disponibilizar seu produto para uso na plataforma BIM.

Em arquivos próprios, esses elementos são modelados externamente ao projeto (com o mesmo software) com seus próprios parâmetros. Internamente ao Revit já há uma diversificada opção de parâmetros disponíveis, mas caso seja necessário a criação de algum novo por alguma dessas famílias, eles automaticamente serão importados e incorporados ao projeto global.

A subdivisão em diversas categorias permite que cada uma delas já seja interpretada pelo Revit de maneira adequada ao seu uso, como por exemplo paredes, sistemas elétricos, canalização, estruturas, mobiliário. Mais profundamente, elas podem ser especificadas de acordo com a classificação padronizada americana *OmniClass,* recurso que ainda não tem equivalência no Brasil.

Cada uma dessas famílias contém parâmetros próprios, relacionados com seu funcionamento, categorização, precificação, a própria forma geométrica e os materiais constituintes, e ainda qualquer outro que o usuário queira atribuir.

Um nível hierárquico abaixo, estão os tipos. Uma família pode se dividir em diversos tipos diferentes tanto com características compartilhadas quanto distintas. Os parâmetros podem ser especificados como referentes à família, ou seja, serão compartilhados entre os diversos tipos. O caso seguinte seria um parâmetro referente apenas àquele tipo específico.

Um bom exemplo seria uma família de paredes, dentro da qual posso ter paredes de blocos cerâmicos furados de espessura 19cm revestidos com argamassa, um segundo tipo que seria de uma parede também de blocos cerâmicos furados, mas dessa vez com 14cm de espessura, e uma terceira completamente diferente, de gesso acartonado sustentado por guias metálicas e camadas de isolamento internas. Essa divisão pode ser observada na figura 9.

- 🛛 XX 🔦 🖻	🗊 🔉 🔶 Properties				
		Basic Wall Blocos Cerâmicos 14cm - Chapisco Emboço/Reboco	o/ 🔻		
Basic Wall			-		
Blocos Cerâmicos 14cm - Chapisco/Emboço/Reboco					
Blocos Cerâmicos 19cm - Chapisco/Emboço/Reboco					
Exterior - Block on Mtl. Stud					
Parede Escadas					
Curtain Wall					
Blindex Box					
Storefront					
Stacked Wall					

Figura 9 - Exemplo de família de paredes e seus diferentes tipos

No último nível hierárquico, temos as instâncias, que são os objetos unitários em si presentes no modelo. Cada um deles pode ter, além dos parâmetros compartilhados, seus parâmetros próprios.

Resumindo, temos a seguinte hierarquia (figura 10):

Figura 10 - Hierarquia de elementos

Grandes fabricantes de diversos ramos da engenharia civil, como a Tigre, Amanco, Phillips, Osram, Deca, disponibilizam seus produtos especificados e modelados, de forma a facilitar o uso pelos engenheiros já nessa etapa de modelagem. Alguns oferecem até mesmo extensões para o software, denominados *plug-ins*, de forma a executar cálculos automatizados de sistemas elétricos, hidráulicos seguindo as especificações de seus produtos.

2.3.3Schedules

A categoria dos schedules é uma poderosa ferramenta de cálculo e quantificação dentro do Revit. Algumas configurações já são pré definidas pelo Revit, como pode ser visto na figura 11:

Figura 11 - Categorias de schedules

O primeiro, "Schedule/Quantities²", é uma tabela geral, que pode ser definida e programada pelo usuário. No capítulo 4 será demostrado o funcionamento de um schedule produzido especificamente para esse projeto. Com essa mesma opção é possível extrair as quantificações de componentes presentes no projeto.

Com a opção "*Material Takeoff*³", é possível quantificar os componentes separados por tipo de material. A diferença entre esse é o primeiro é o nível de detalhamento: por exemplo, quando no primeiro a quantificação de paredes nos traria como resultado uma quantidade em metros lineares ou em área de parede elevada de

² Tabela/Quantidades, em tradução livre

³ Quantificação de materiais, em tradução livre

um certo tipo, o segundo nos retornaria a quantidade de blocos utilizados, o volume de argamassa de revestimento, etc.

As demais opções são *"Graphical Column Schedule⁴"* que retorna uma representação gráfica dos pilares, similar a uma prancha com elevações dos diversos pilares; *"Sheet List⁵"*, que gera uma lista de pranchas emitidas, bastante útil para arquivo, medição para projetistas, protocolos de emissão; *"Note Block⁶"*, que é um simples bloco de notas; e por último *"View List⁷"*, que lista os pontos de vista salvos no projeto.

Esses schedules leem os parâmetros das famílias como especificado pelo usuário, gerando uma lista com essas especificações, ligados sempre às famílias e instâncias do projeto. Ou seja, qualquer mudança realizada no modelo 3D vai ser seguida automaticamente por uma atualização nos schedules.

Cada uma das opções de formatação pode ser alterada a qualquer momento, como inclusão e exclusão de linhas e colunas, tamanho e fonte das letras, cores, etc.

Há ainda a possibilidade de exportar esses schedules, no entanto, em formato genérico de texto separado por ponto e vírgula, o que obriga o usuário a ter que formatar o arquivo gerado para que possa ser utilizado em uma planilha de Excel por exemplo. Existem plug-ins de terceiros que já fazem essa exportação formatada para células para uso no Excel.

⁴ Representação gráfica de pilares, em tradução livre

⁵ Lista de pranchas, em tradução livre

⁶ Bloco de notas, em tradução livre

⁷ Lista de vistas, em tradução livre

2.3.4Análises do modelo

O Revit permite fazer algumas análises utilizando o mesmo modelo. Algumas delas gráficas, como a análise energética, análise lumínica, outras utilizando cálculo, como a própria análise estrutural dos elementos. As opções se encontram concentradas na seção de análise do programa, como pode ser observado na figura 12

Figura 12 - Opções de análise do modelo

2.3.4.1 Análise lumínica do modelo

Com essa ferramenta, o Revit simula a exposição à luz do sol e às luzes artificiais inseridas no projeto. Com isso, ele gera a imagem com graduação de cor de acordo com a exposição do ponto, podendo ser inclusive ser gerado pela internet, processado pela própria Autodesk com o serviço Cloud Autodesk 360.

2.3.4.2 Análise energética

A partir da leitura de parâmetros dos materiais, sistemas de ar condicionado e de aquecimento e até mesmo da posição do sol em relação ao edifício, o Revit realiza a análise de aproveitamento energético do edifício.

Exportando esses parâmetros para outros softwares, como o Green Building Studio, da própria Autodesk, essa análise já gera relatórios com estimativas de pontos para certificações como LEEDS e ENERGYSTAR.

2.3.4.3 Análise estrutural

Com configurações e famílias já especificadas com essa finalidade, é possível realizar uma análise estrutural preliminar estática a partir do próprio modelo 3D.

O Revit permite inserir cargas em diversas configurações, como pontuais e distribuídas, gerando a representação gráfica dos esforços na estrutura, como pode ser observado na figura 13.

Figura 13 - Análise estrutural

Fonte: Autodesk, 2015

Ainda, o software cria o modelo de análise estrutural, que pode ser exportado de maneira a ser utilizado em outros programas. É importante frisar, no entanto, que o Revit não é um software de análise estrutural como objetivo. Outros programas com esse fim específico como o SAP da CSI America, ou Robot da Autodesk têm muito mais competência e devem ser utilizados como cálculo final.

2.3.4.4 Análise de interferências

A ferramenta *"Clash Detection"* usa o princípio básico que dois corpos não podem existir no mesmo espaço físico. Ao utilizar essa ferramenta, o usuário escolhe que categoria de objetos gostaria de comparar (apenas para economizar poder de processamento e tempo, já que na verdade todos os elementos podem ser estudados de uma vez só), e a partir da comparação da localização espacial onde cada um desses objetos está contido, o Revit gera um relatório indicando pontos onde há dois objetos ocupando o mesmo espaço.

Essa ferramenta é extremamente útil no caso de checar a compatibilidade de sistemas prediais e das estruturas por exemplo, sistemas de esgotamento sanitário e tetos de gesso, e qualquer outra interferência.

O sistema ignora elementos anotativos, como por exemplo a simbologia de elementos de tomada, hidráulico, linhas de referência etc., já que esses são apenas elementos de desenho. Um exemplo de relatório gerado a partir do modelo produzido para esse projeto pode ser visto na figura 15, mostrando graficamente no próprio modelo e de uma segunda forma, em tabela acessível via navegador de internet. Ela indica a sobreposição de uma parede com elementos estruturais.

Figura 14 - Relatório visual da interferência entre objetos

2.3.5Exportação de dados e integração entre programas

A Autodesk utiliza um formato próprio para armazenar arquivos (de extensão .rvt). No entanto, para permitir a integração do modelo 3D com os outros programas citados anteriormente no capítulo 2.2, é possível salvar o projeto com o formato livre IFC, que funciona na maioria dos outros programas apesar de algumas características e informações específicas e exclusivas do Revit poderem ser perdidas.

Além disso, existem ferramentas de exportação gráfica, de modo a criar imagens e mesmo vídeos demonstrando o projeto. Isso pode ser utilizado de forma a entender métodos construtivos, checar interferências, estudar cenários, ou simplesmente divulgar uma prévia do empreendimento.

2.3.6Produtividade

As ferramentas de auxílio à quantificação oferecidas pelo Revit representam uma sensível redução no tempo gasto nesses serviços. A principal vantagem se dá nas fases pré executiva e executiva da obra, já que toda a geração de orçamentos e da base de dados para o próprio planejamento do projeto já pode ser feito baseado em quantitativos precisos fornecidos pelo modelo digital no Revit.

Em pesquisa feita com busca na base de dados da empresa onde foi realizado o estágio pelo autor, foi observado que a experiência da implantação desse sistema representou uma redução na casa dos 30% da quantidade de horas gastas pela equipe de orçamento e planejamento.

No caso de a equipe já ter experiência anterior, essa redução chega até 40% de tempo, resultado extremamente significativo.

Essa redução ainda pode ser considerada maior, já que nessa pesquisa não foi contemplada a redução de tempo gerada pela economia de tempo na fase de compatibilização de disciplinas.
3 INTEGRAÇÃO COM PLANEJAMENTO – 4D

Segundo definição do PMBoK (PMI, 2013), gerenciamento de projeto é a aplicação do conhecimento, habilidades, ferramentas e técnicas para projetar atividades que vão ao encontro dos requerimentos do projeto.

Ainda segundo o PMBoK, o gerenciamento tipicamente inclui:

- Identificar os requerimentos;
- Montar, manter e administrar o fluxo de comunicação entre as partes que são ativas, efetivas e colaborativas;
- Gerenciar as partes de forma que seja entregue um resultado compatível com os requerimentos do cliente;
- Balancear os tradeoffs das restrições de projeto, como o escopo x qualidade x prazo x orçamento x recursos

A ferramenta permite auxiliar de forma direta nessas decisões, já que a obra é "construída" seguindo ordem semelhante ao que será observado na prática, com a enorme e óbvia vantagem de não gastar os recursos. Com isso, pode se chegar a um ponto próximo ao ideal antes mesmo de o canteiro ser erguido.

Esse planejamento da obra é parte imprescindível para o sucesso e o cumprimento das metas estabelecidas para o projeto. A integração do modelo BIM com o cronograma elaborado funciona como uma via de duas mãos: o modelo fornece informações para a elaboração do cronograma, e o planejamento fornece cenários e estudos para serem implementados graficamente no modelo.

3.1 Ferramentas utilizadas

Para a elaboração do planejamento 4D, além do projeto modelado no Revit precisamos de um cronograma digital para ser integrado e associado aos elementos no modelo.

Para tal, foi utilizado o software Project, parte do pacote Office da Microsoft, e a integração foi feita utilizando o software Navisworks, da Autodesk.

3.1.1 Microsoft Project

O Project fornece diversas ferramentas importantes de planejamento. Sua interface básica pode ser observada na figura 15, e nela são inseridas informações como o nome da tarefa, a duração, as datas, e qualquer outra definida pelo usuário. Ainda, é gerado automaticamente o gráfico de Gantt do projeto.

AROUIVO	o - c TAREE	⇒ FA RECURSO	RELATÓRIO I	PROJETO EXIBI	FERRAMEN	ITAS DO GRÁFICO	DE GANTT	Projeto1 - Proje	ect Professional				Lean	2 - dro Sander Müller - 🔁	бX
Gráfico de Gantt * Exibir	Colar	X Recortar Copiar * Pincel de Forma Årea de Transferência	Calibri atação N I	• 11 • <u>S</u> <u>A</u> • Fonte 5	○ 32 30 77 K	Atualiza	ar como Agendado ar Vínculos	Agendar Manualment	Agendamento e Automático Tarefas	Mover *	Tarefa Inserir	Anotaç Informações Adicion Propriet	ões es nar à Linha do Tempo dades	Rolar até a Tarefa Edição	×
	icio 2/15						Adicio	nar tarefas con	n datas à linha	do tempo					1émino 21/02/15
-	0	Modo da 👻 Nome d	a tarefa	■ Duração ■	Início 🗸	Término 🗸	Predecessoras	08/Fev/15 D S T Q Q	15/Fev/15 S S D S T	22/Fev/15 Q Q S S D S T	01/Mar/15 Q Q S S D S T 0	08/Mar/15 Q Q S S D S T Q Q	15/Mar/15 S S D S T Q Q 5	22/Mar/15 S D S T Q Q S S	29/Mar/: A
	_							_							
_															
E GANT															
LECO D															
GRV															
															v
PRONTO	,∳ NC	OVAS TAREFAS : AGEND	ADA MANUALMEN	πε			•	•					5 6 2	■ €	ب ا

Figura 15 - Interface do Microsoft Project

A partir desses dados inseridos pelo usuário, podem ser gerados outros relatórios como o diagrama PERT/CPM, diagrama de rede, inclusive com cálculo do(s) caminho(s) crítico(s).

Para cada tarefa, podem ser ainda associados recursos e equipes necessárias à sua realização, para posteriormente serem gerados histogramas de uso de materiais e de mão de obra.

3.1.2Alimentação de dados para o planejamento

A partir do modelo completo, a velocidade de extração de dados de quantitativos se limita a alguns cliques. Com o devido cuidado no desenvolver da modelagem aliado com alguns filtros na informação, os quantitativos precisam de pouco tratamento para que possam ser utilizados na elaboração dos cronogramas.

Um bom exemplo é o cálculo das durações das atividades baseado nos quantitativos associados aos elementos do modelo. Em um exemplo mais específico, com o uso das informações de um schedule de paredes como extensão linear e área dos panos é possível calcular a duração da tarefa de elevação das alvenarias de certo pavimento, ou da tarefa dos revestimentos sobre essas mesmas paredes.

Com a programação de uma schedule específica para isso, é possível automatizar esse cálculo inclusive, uma vez que podemos criar novos parâmetros associados às famílias (como já foi discutido anteriormente) ligados a produtividade daquela tarefa. Na schedule, a partir dos quantitativos do modelo e das produtividades que fornecemos, além de uma metodologia de cálculo fornecida pelo usuário o produto é a duração já calculada pelo Revit, de maneira similar ao que fazemos no Excel, e com essas informações podemos alimentar as informações de duração no Project.

Por último, os recursos atribuídos no Project para cada tarefa podem tirar proveito dos quantitativos gerados pelo Revit.

3.1.3Alimentação de dados para o modelo

O processo de integração do modelo com o cronograma tem um certo caráter iterativo, já que uma vez que o modelo está pronto, é elaborado o cronograma, mas a partir do planejamento pronto, com o cronograma feito, pode se modificar métodos construtivos para evitar interferências, o próprio plano de ataque pode ser alterado de forma a permitir o facilitar a execução de tarefas concomitantes, e a própria natureza orgânica do planejamento faz com que ele possa se modificar durante a fase de execução.

Com essas informações, o Revit nos permite a separação em fases da obra: cada elemento pode estar contido em sua devida fase, de forma que equipamentos temporários, como uma grua ou um pórtico podem ser representados sem prejudicar o projeto com elementos permanentes que venham a ocupar o mesmo espaço adiante.

3.2 Navisworks Manage

O Navisworks Manage é a ferramenta que finalmente integra o modelo e o cronograma. Para isso, é necessário importar o modelo digital 3D de forma a criar um novo arquivo em formato proprietário utilizado pelo Navisworks. Esse modelo pode ter sido criado em diferentes programas, como os citados no capítulo 2.2, no caso desse estudo o Revit.

Além disso, um cronograma deverá ser importado, sendo possível fazê-los a partir dos softwares Primavera e Project, no caso desse projeto, o último. É possível cria-lo no próprio Navisworks, mas comparado com as outras ferramentas é ainda bastante rudimentar. Uma vez importados, através do Navisworks deverá ser associado cada objeto a sua respectiva tarefa, de modo que seja possível visualizar a sequência construtiva proposta.

Apesar de ser um processo automatizado, a atualização tanto do modelo quanto do cronograma não é completamente automática, uma vez que a ela depende do comando do próprio usuário.

Figura 16 - Interface do Navisworks Manage

Existe ainda uma gama de ferramentas no Navisworks, como o *"Clash Detection⁸"* usada para detectar interferências entre objetos do modelo, e de quantificação de componentes (ambas também presentes no Revit).

O foco principal no entanto é o planejamento 4D, de forma a gerar "fotografias" da obra em diferentes momentos. Para tal, basta especificar a data desejada e gerar o relatório.

⁸ Detecção de choques, em tradução livre

De maneira ainda mais completa, é possível gerar um *time-lapse*⁹ em vídeo ou com uma sequência de fotos de todo o desenvolvimento da obra, com diversas configurações ajustáveis.

3.3 Planejamento 5 D e 6D

Além do planejamento 4D, outras denominações derivadas do conceito de adicionar ramos da construção.

Quando se integra um cronograma financeiro a esse mesmo modelo, surge a denominação 5D, e ao incorporar após a construção o *as built,* 6D. Apesar disso, o estudo desses dois conceitos não está contemplado no escopo desse projeto e particularmente não agrada ao autor.

4 DESENVOLVIMENTO DO MODELO EXPOSITIVO

Para demonstrar os conceitos apresentados durante os capítulos 1, 2 e 3, foi desenvolvido um modelo simulando como seria a aplicação em um empreendimento real.

4.1 Descrição do empreendimento

A concepção foi baseada em um estudo de massa realizado como projeto da disciplina *Engenharia Legal e Social*, parte da grade de disciplinas do curso de Engenharia Civil da Universidade Federal do Rio de Janeiro (UFRJ).

Nele chegou-se à conclusão que, na região de Vila Isabel em Dezembro de 2014, era viável a execução de um empreendimento de 5 andares, com 4 unidades cada de dois quartos e uma vaga de garagem e nas unidades de frentes haveria varanda. Cada uma dessas unidades deveria ter 114m² (varanda com 19m²) e na área comum deveria haver, no PUC, um salão de jogos, um salão de uso múltiplo, uma cozinha, uma sala de ginástica e o apartamento do zelador. As vagas de garagem seriam divididas em 10 cobertas e 10 descobertas.

A partir disso foram criados os diversos elementos que constituem o projeto, primeiro no software mais simples (Home Designer Suite), passando para o Revit, elaborando o cronograma em Microsoft Project, e integrando os dois no Navisworks.

4.2 Concepção inicial – uso do Home Designer Suite

Para o estudo inicial, foi utilizado o software da Chief Architects, já que ele utiliza alguns conceitos BIM e tem uma interface e utilização bastante simples, de modo que o usuário não precise ter experiência técnica para produzir um modelo básico.

4.2.1Uso e características do programa

O Home Designer possui sua própria biblioteca de componentes e materiais, no entanto muito menos customizável que o Revit. Dentro de alguns componentes pré disponibilizados, é possível criar novas texturas de revestimento, elementos de humanização como pessoas, carros e plantas a partir de imagens, mas não novos objetos.

Para criação da construção em si, existem ferramentas de criação de diversos tipos de paredes, portas, janelas, pisos, escadas, mobília, sistema elétrico, entre outros (figura 17).

Figura 17 - Elementos construtivos do Home Designer Suite

Há também uma ferramenta que permite que se crie o terreno que circunda a construção, de forma a representar melhor as condições do projeto.

Como um facilitador, existe um passo a passo guiado, chamado de *House Wizard* (figuras 18 e 19) incorporado no próprio programa, com o qual é possível criar uma construção unindo cômodos pré planejados apenas sendo necessário escolher a disposição espacial deles.

Figura 18 - Início do Home Wizard

Com a escolha de algumas configurações, como número de vagas para carros, número de quartos e banheiros o passo a passo vai se desenvolvendo, de forma a gerar a arquitetura com aquelas configurações fornecidas.

House Wizard	×							
First Floor Main Rooms Indicate the number and kind of rooms that you wish to have on the first floor of your house. If you are unsure how many rooms you will actually need, include them here and you can delete them later on as you arrange them.								
Select the number of bedrooms that you want.								
Bedrooms: 3								
Select the number of full and half bathrooms that you want.								
Full Bathrooms: 2								
Half Bathrooms: None								
Select each of the following rooms that you want.								
✓ Office/Den								
Formal Dining Room								
🔽 Family Room								
🔽 Living Room								
✓ Kitchen								
<pre><back next=""> Cancel Help</back></pre>								

Figura 19 - Escolha de configurações do Home Wizard

4.2.2Desenvolvimento do projeto arquitetônico básico

Inicialmente, foi concebida a arquitetura do edifício, levando em conta os limites de área do terreno. Por limitações do programa, primeiramente foi modelado apenas uma unidade do que viria a ser o edifício, constituída de uma suíte, um banheiro social, um quarto, sala e corredor de acesso, cozinha, área de serviço e quarto de depósito. Para as unidades de frente, adiciona se a varanda. A planta pode ser observada na figura 20, incluindo parte das áreas comuns do pavimento.

Figura 20 - Arquitetura desenvolvida no Home Designer Suite

Uma das vantagens que o BIM já deixa claro nesse programa é a avaliação arquitetônica automatizada já feita pelo próprio programa. Detalhes como portas ou corredores muito estreitos (figura 21), iluminação insuficiente, ou até mesmo o conflito de colocar gavetas no armário onde está a pia são automaticamente avisados ao usuário para que possam ser corrigidos.

Figura 21 - Aviso de porta muito estreita

Na figura lê-se (em tradução livre): "Essa porta pode ser muito estreita. A não ser que seja o acesso a um pequeno closet ou área de armazenamento, uma porta deverá ter ao menos 700mm (preferencialmente 750mm) de largura

Um detalhe importante na utilização desse software é que o mercado alvo é

os Estados Unidos, portanto toda a concepção arquitetônica e método construtivo é pensado nas práticas locais. Dessa forma, as paredes são automaticamente assumidas como feitas de molduras de maneira fechada com emplacamento. O próprio software já se encarrega de calcular a disposição do madeiramento, como pode ser visto na figura 22 (nesse caso apenas das paredes internas).

Figura 23 - Distribuição do madeiramento gerado pelo Home Designer Suite

O resultado final também é fornecido em 3D, como pode ser visto na figura 23. Apesar de o software só permitir a modelagem em planta, o modelo 3D é gerado de maneira completamente automática, utilizando os parâmetros fornecidos pelo usuário.

Figura 22 - Visualização 3D da sala de estar

A partir desse modelo, o software permite que o projeto seja exportado para outros como o AutoCAD, geração de vistas internas (figura 24) e retirada de quantitativos de materiais, no entanto, sem opções avançadas de customização de opções, podendo apenas habilitar ou desabilitar a exibição das colunas.

Figura 24 - Vista 3D humanizada da sala de estar

4.3 Desenvolvimento do projeto em Revit

A partir da concepção arquitetônica inicial, partiu se para o desenvolvimento da versão final da arquitetura no software mais robusto, o Revit. Para tal, algumas modificações foram feitas, compatibilizando com o método construtivo e da natureza da estrutura, que na verdade seria em concreto armado.

A sequência com que os objetos foram adicionados no desenho em muito segue a mesma lógica da execução em campo: materialização de eixos, fundações, estruturas, alvenarias, sistemas prediais, revestimentos, esquadrias, louças e metais, finalização da obra (resumidamente).

4.3.1Lançamento das estruturas

Seguindo as recomendações aprendidas nas disciplinas de Estruturas de Concreto Armado, foi feito o lançamento das estruturas de forma a interferir o mínimo possível na arquitetura.

Foi escolhido adotar pilares parede de maior dimensão nos poços de elevador e escada, e nos extremos do edifício para conferir rigidez à estrutura. Para os demais foi adotado um pilar padrão de 50cm x 20cm e para cada um desses pilares, foi criada uma família. Por ser um elemento estrutural, o Revit não permite o dimensionamento geométrico livre no próprio local onde o elemento será colocado, forçando essa criação de diferentes famílias (figura 25).

Figura 25 - Famílias de elementos estruturais - pilares

Foram adotadas fundações rasas, e da mesma forma que as colunas, para cada forma geométrica teve que ser criada uma família diferente. Caso um objeto se sobrepusesse ao outro, automaticamente o programa já os uniria criando um elemento contínuo.

No caso de lajes, adotou-se a altura constante de 15cm, permitindo que houvesse apenas uma família de objetos estruturais para laje. Um detalhe que difere esse elemento estrutural dos outros é que a mesma família de lajes é usada também para pisos e contra pisos, estando diferenciada apenas no tipo de elemento.

O Revit permite modelar toda a informação de armação do concreto armado com o comando "*Rebar*", mas assim como os cálculos para determinação dessas armaduras não está no escopo do projeto, essa ferramenta também não.

A partir da estrutura lançada, foram criados eixos de referência chamados "*Grids*" (figura 26), cada um contemplando uma linha julgada importante como de pilares, de paredes, da varanda, os eixos centrais, nomeando cada um deles de forma conveniente – eixos horizontais com letras e os verticais com números.

Figura 26 - Eixos de referência do modelo

Após modelados todos os elementos da estrutura, já pode ser observado o modelo em 3 dimensões (figura 27).

Figura 28 - Estrutura do edifício

A partir do momento que todos os elementos estruturais estão prontos, já é gerado um modelo para análise estrutural, que pode ser exportado para outros softwares de análise (figura 28).

Figura 27 - Modelo para análise estrutural

4.3.2Fechamento vertical

Para o fechamento do edifício, foram utilizadas paredes de blocos furados de duas espessuras: 14cm e de 19cm. Para cada uma dessas foi criado um tipo de elemento dentro da família de paredes comuns (outro tipo de parede será tratado mais a frente), onde são especificadas as camadas que as constituem (figura 29). Dessa maneira, nos objetos já há a informação e as especificações que os blocos serão revestidos com chapisco, emboço e reboco, além de uma série de outros parâmetros como resistência mecânica e térmica.

							_
t Assei	mbly						
amily:		Basic Wall					
vne:		Blocos Cerâmicos 14cm - C	anisco/Emboco/Reboco				
Total thickness:		0.2000 m	Sample Height: 6.0000 m				
esistar	nce (R):	0.3267 (m ² ·K)/W					
herma	Mass:	24.95 kJ/K					
Lowers							
Layers	,			EXTERIOR SIDE			
Function		Function	Material	Thickness	Wraps	Structural Material	
1	Finish	2 [5]	Reboco	0.0050 m			
2	Finish	1 [4]	Emboço	0.0200 m			
3	Substr	ate [2]	Chapisco	0.0050 m			
4	Core E	Boundary	Layers Above Wrap	0.0000 m			
5	Structu	ure [1]	Brick, Common	0.1400 m			
6	Core E	Boundary	Layers Below Wrap	0.0000 m			
7	Substr	ate [2]	Chapisco	0.0050 m	V		
8	8 Finish 1 [4]		Emboço	0.0200 m	V		
9	Finish	2 [5]	Reboco	0.0050 m	V	-	
<u> </u>		INTERIOR SIDE					
	Insert	Delete	Up Down				
Dofaul	t Wranning						
At Ins	erts:	At Fr	ds:				
Both	eres.	▼ None					
boun							
Modify	Vertical St	tructure (Section Preview only)					
	Modify	Merge Regions	Sweens				
	mouny	inerge Regions					
A	ssign Layer	s Split Region	Reveals				
<<	Preview					OK Cancel Help	

Figura 29 - Configurações do tipo de parede com blocos de 14cm

Como é possível observar na figura 29, a cada um dos materiais é atribuído um nível de importância na coluna "*Function¹⁰"*. Isso serve para definir como será a interação entre paredes, determinando qual material terá mais importância sobre o outro, e consequentemente como será representado graficamente no caso de detalhamento do sistema construtivo.

⁵³

¹⁰ Função, em tradução livre

Para aplicação do acabamento, é utilizada a ferramenta *"Paint¹¹"* que aplica uma camada sem espessura por sobre a parede. Apesar de conceitualmente não ser o caso, foi utilizada essa mesma ferramenta para aplicação de acabamentos cerâmicos (que deveriam ter espessura), e o resultado pode ser observado na figura 30. O assunto de materiais será abordado no capítulo 4.3.6.

Figura 30 - Edifício com alvenarias

4.3.2.1 Fachadas cortina

Dentro da categoria de paredes, há a família de "Curtain Walls", ou em tradução livre, paredes cortina. Ela é utilizada para modelar fachadas cortina e elementos que utilizem o mesmo conceito. No caso desse projeto, foi utilizada para

¹¹ Pintar, em tradução livre

modelar o fechamento da recepção do edifício, com esquadria de alumínio e painéis de vidro (figura 31).

Figura 31 - Parede cortina

4.3.3Sistemas prediais

Para demonstrar as capacidades do Revit no caso de sistemas prediais, foi escolhido apenas o sistema elétrico, e aqui será tratado o de uma unidade.

4.3.3.1 Iluminação

Para dimensionar o número e potência requerida de pontos de iluminação para cada cômodo, foi criada uma schedule que automaticamente lê alguns parâmetros do ambiente em questão e, junto a outros criados especificamente para essa tarefa, calcula o resultado.

Para isso, foi acessado o website da fabricante Phillips de componentes de iluminação, escolhidos os tipos de lâmpada e inseridos no programa suas características. A partir daí, foi programado nessa schedule o método de cálculo proposto pela NBR 5413, com o resultado demonstrado no anexo V. Com o número mínimo de dispositivos de iluminação conhecido, foi feita a distribuição.

4.3.3.2 Pontos de energia

A partir das definições dispostas na NBR 5410, foram criados pontos de distribuição de energia na unidade. A família de acessórios elétricos possui algumas peculiaridades, já que ela é composta de três elementos:

• Elemento físico

É o objeto que de fato compõe o modelo, e estará fisicamente presente na construção. Por exemplo, é a caixa de tomada que fica na parede (figura 32).

Figura 32 - Elemento físico de equipamento elétrico

• Elemento anotativo

Incorporado nesse objeto 3D, está uma subfamília de elementos puramente gráficos. Nele pode se configurar em que vista ele será visível, de modo a poder controlar quando vai ser visível. Por exemplo, em uma tomada a meia altura de 100VA, o elemento anotativo está demonstrado na figura 33 e só estaria presente em projetos ligados à elétrica, não sendo mostrado em projetos de arquitetura, instalações hidráulicas, ou mesmo a vista 3D do projeto.

Figura 33 - Elemento anotativo de tomada a meia altura

• Elemento de circuito

O Revit pode lidar automaticamente com criação dos circuitos elétricos presentes no empreendimento. Para que isso seja possível, um conjunto com as informações de sistema necessárias de cada acessório fica armazenada em uma subfamília de circuito, denominado *"Conector Element"* ou elemento de conexão, em tradução livre.

Nele são especificadas configurações como potência, número de fases em que ele está ligado, voltagem, classificação da carga, entre outros. No Revit ele está representado por um círculo espacial com uma cruz interior, como pode ser visto na figura 34 (e ao lado, as configurações de carga).

Figura 34 - Elemento de conexão

4.3.3.3 Configurações de rede elétrica e painel de distribuição

Por ser um software altamente customizável, algumas configurações referentes à rede elétrica devem ser feitas antes da criação dos circuitos. Além das questões de desenho e modelagem já discutidas, é preciso criar parâmetros de rede, desde a definição dos nomes adotados para diferentes fases e até mesmo a diferença de potencial entre fases e entre fase e neutro.

Na figura 35 é possível observar algumas dessas configurações, dentre elas o material e diâmetros utilizados de fios, representação gráfica dos fios em eletrodutos, número de fases e configuração entre elas (delta ou estrela), fatores de demanda, classificação de cargas, etc.

Electrical Settings		8 🔀
Hidden Line	Setting	Value
Angles	Ambient Temperature	30 °C
Wiring	Gap of Wiring Crossing	0.00 m
Correction Factor	Hot Wire Tick Mark	Fio Fase
Ground Conductors	Ground Wire Tick Mark	Fio Terra
Voltage Definitions	Neutral Wire Tick Mark	Fio Neutro
Distribution Systems	Slanted Line across Tick Marks	No
Rise Drop	Show Tick Marks	Always
Single Line Symbology	Max Voltage Drop For Branch Circuit Wire Sizing	2.00%
Size	Max Voltage Drop For Feeder Circuit Wire Sizing	3.00%
Conduit Settings Rise Drop Single Line Symbology Size Load Calculations Panel Schedules		
		OK Cancel

Figura 35 - Janela de configuração de sistema elétrico

Há a possibilidade de criar diferentes sistemas de distribuição de modo que hajam circuitos bifásicos ou trifásicos. A cada painel de distribuição pode ser atribuído um desses sistemas.

Com todas essas configurações de acordo com a rede de distribuição das concessionárias locais e dos materiais utilizados na obra, basta criar o painel de distribuição adequado e selecionar os elementos que vão compor o circuito, como demonstrado na figura 36. As próprias fiações incluindo diâmetros serão automaticamente calculados, e o resultado obtido (de uma unidade) pode ser observado no anexo VII.

Figura 36 - Circuito da cozinha e painel de distribuição

4.3.4Pisos e tetos

Para criar os contra pisos e acabamentos, foi utilizada a mesma família que nas lajes estruturais, porém dessa vez sem as configurações de estrutura. Da mesma forma que as paredes, os pisos funcionam em camadas, e com isso foram criados diferentes tipos para pisos impermeabilizados (figura 37) e não impermeabilizados.

Dessa vez, o acabamento não utilizou a ferramenta "Paint", e sim uma dessas camadas para demonstrar que decidir fazer dessa maneira, apesar de ser espacialmente mais correto (os revestimentos assumem uma espessura, algo que com a ferramenta *paint* não é possível), faz com que existam muitos tipos de piso sobrecarregando o arquivo.

iyers						
	Function	Material	Thickness	Wraps	Structural Material	Variable
	Core Boundary	Layers Above Wrap	0.0000 m			
2	Core Boundary	Lavers Below Wran	0.0200 m			
1	Substrate [2]	Asphalt Bitumen	0.0050 m			
Ins	sert Delete	Up Down				

Figura 37 - Configuração de camadas de contra piso de área impermeabilizada

Para criar os tetos de gesso, basta clicar no ambiente que se deseja que o Revit se encarrega de limitar a fronteira. Nos casos em que se deseje, é possível alterar manualmente essas fronteiras.

4.3.5Acabamentos

A colocação de esquadrias é muito simples, bastando escolher a posição em um elemento que os suporte, no caso, paredes.

Já na posição desejada é possível controlar características como altura do peitoril para janelas, tamanho do vão, sentido de abertura da esquadria.

No caso de mobiliário, também é necessário apenas escolher a posição dos mesmos. Muitos fabricantes disponibilizam seus produtos para download na internet, apesar de até o momento não ter sido encontrado nenhuma fabricante de móveis brasileira a fazer o mesmo.

Esses arquivos podem ser inclusive editados, de forma a modificar materiais, fazer pequenas alterações, adequando ao contexto.

4.3.6Materiais e texturas

O Revit já contém uma extensa biblioteca de materiais e texturas vindas desde o momento de sua instalação. Os materiais contêm informações essenciais para análises acústica, energética e mesmo estrutural do edifício. Para cada material podem ser atribuídas características pré definidas, separadas por categoria de material, além de uma textura que será a representação visual.

Exemplificando, no caso do concreto estrutural (figura 38) podem ser definidos valores de módulo de Young, coeficiente de Poisson, densidade, resistência a compressão, etc. No caso de materiais que não utilizem esses parâmetros, as pré definições do Revit os omite.

Para melhor representação gráfica, diversos materiais e texturas foram criadas pelo autor a partir de dados na internet.

Material Browser - Concrete - Cast-in-Place Concret	e - 35 MPa		[8 🔀	
concret	×	Identity Graphic	s Appearance Pl	nysical +	
Project Materials: All 🔹		Normal Weig	hete - 35 MPa 🖓	i 🗅 🗙	
Search results for "concret"	► Information				
Name		▼ Basic Thermal			
Chapisco		Thermalfficient	0,00001 inv °C	*	
Concrete - Cast-in-Place Concrete - 35 MPa	Concrete - Cast-in-Place Concrete - 35 MPa				
		Behavior	Isotropic	•	
Concrete Masonry Units		Young's Modulus	29.910,0 MPa	*	
Concrete, Cast In Situ		Poisson's Ratio	0,20	*	
Concrete Cast-in-Place grav		Shear Modulus	12.463,0 MPa	*	
		Density	2.406,54 kg/m ³	*	
Concrete, Sand/Cement Screed					
Emboço	Emboco				
		Concretression	35,0 MPa	•	
Search Result 🔹		Shear Stfication	1,00	-	
Search Result Name	î	1	Lightweight		
Autodesk Mat Terrazzo		Yield Strength	0,0 MPa	A V	
Flooring		Tensile Strength	0,0 MPa	*	
Masonry Terrazzo					
✓ AEC Materials ⊕ □ Structure, Precase ✓ Ceramic	t Concrete Beams				
Concrete Slab, Tiles 25 x 2	25				
	~	-			
			OK Cancel	Apply	

Figura 38 - Propriedades de material - Concreto 35MPa

4.3.7 Renderização

O trabalho de emissão do projeto final pode ter um aspecto visual bastante elaborado com ferramentas simples de serem utilizadas. Para poupar poder de processamento, o software não utiliza todo seu poder gráfico durante a modelagem para permitir um funcionamento mais suave.

No entanto, a ferramenta *"Render"* gera imagens de altíssima qualidade mostrando o trabalho final, podendo ser gerado pelo próprio computador do usuário ou pela própria Autodesk, sendo necessário enviar informações online. O resultado fica disponível em uma conta pessoal no website da empresa. Algumas renderizações do projeto podem ser encontradas nos anexos XIII a XX.

4.3.8Schedules e emissão dos projetos

Utilizando a ferramenta de quantificação do Revit, foram gerados relatórios relativos a algumas das disciplinas para demonstração do resultado final.

Os quantitativos foram relativos a acessórios de elétrica (tomadas – anexo IX) e dispositivos de iluminação (lâmpadas e luminárias – anexo XIII), volume de concreto das fundações (anexo X), especificações dos circuitos (bitola e comprimento dos fios, número do circuito – anexo VI), quantidade de janelas e portas (anexos XI e XII respectivamente).

Foi ainda gerado o relatório referente à configuração do painel de distribuição de energia, calculado automaticamente como descrito no capítulo 4.3.3 (anexo VII).

Ainda, foram geradas pranchas relativas ao projeto de formas, arquitetura, e sistema predial elétrico de uma unidade.

4.4 Planejamento 4D

Para essa etapa do projeto, foi pensada uma sequência lógica de tarefas que representasse o processo de construção do edifício. O cronograma foi elaborado utilizando o Microsoft Project utilizando as premissas explicadas anteriormente de forma a permitir a importação com o Navisworks.

A duração das tarefas foi estimada utilizando informações de produtividade presentes em diversas disciplinas cursadas ao longo do curso de engenharia e também com base no TCPO (PINI, 2010).

O cronograma completo com diagrama de Gantt pode ser encontrado no anexo XXI.

A importação tanto do cronograma quanto do modelo é bastante simples, bastando escolher o arquivo correspondente (figura 39). Após feito isso, foi então gerada a simulação da evolução física da obra, encontrada como uma sequência de imagens no anexo XXII.

Figura 39 - Botões de importação de modelo (a) e cronograma (b)

5 CONSIDERAÇÕES FINAIS

5.1 Problemas observados

O software, por ser extremamente versátil e completo, muitas vezes exige conhecimentos específicos sobre assuntos nem sempre cotidianos na vida de um engenheiro civil. Isso também leva a requerer um treinamento para o software bastante extenso, gerando custos tanto financeiros quanto de mão de obra.

Ainda há questões de compatibilidade entre mercados: a Autodesk, empresa americana, ainda não compatibilizou completamente as simbologias e algumas práticas comuns no Brasil, de forma que muitas dessas modificações têm que ser feitas manualmente (como foi o caso da simbologia seguindo as normas ABNT no sistema elétrico desse projeto). Seguindo essa mesma linha de raciocínio, há facilidades que ainda não tiramos proveito completamente, como é o caso da classificação OmniClass que está presente no software, mas não tem equivalente oficial no Brasil.

Outro problema foi observado na questão de sistemas. Por ser um software altamente customizável e com vastas opções, por vezes a complexidade de especificar componentes no Revit é maior que realizar os cálculos e especificações manualmente. Pôde se observar essa situação na criação do sistema elétrico do edifício, onde foi necessário criar as famílias de representação gráfica, como descrito acima, a família de circuitos além da família do objeto em si. Ainda, toda a especificação de rede fornecida pela concessionária teve que ser feita manualmente. Essa ferramenta seria extremamente útil em obras de grande porte, com diversos circuitos, mas perde o sentido de aplicação em obras recorrentes de pequeno porte.

No caso de alguns componentes que exigem hospedeiros (como é o caso de janelas e portas que têm as paredes como hospedeiros), surgiram problemas. Para a replicação desses objetos, o Revit não consegue identificar automaticamente o novo hospedeiro (como por exemplo, replicar as portas e janelas de um pavimento para o outro, que deveria associá-las à parede dos outros pavimentos), precisando isso ser feito manualmente. Um objeto sem o hospedeiro correto poderia trazer resultados equivocados em takeoffs, por exemplo.

Por último, há ainda algumas questões de software, como erros gerados aleatoriamente, e a própria necessidade de ter um computador capaz de executar o programa, que requere especificações bastante robustas e portanto, gera custos ainda mais altos de implantação para um software que já é caro.

5.2 Conclusão

Após esse estudo que já fornece uma base de comparação, embora não explore todas as capacidades do conceito BIM e da ferramenta Revit, pode se dizer que a longo prazo os ganhos de produtividade (descritos no capítulo 2.3.6) compensam o investimento na compra de computadores, software e no treinamento das equipes.

O potencial de modularização de componentes também indica que a utilização desse tipo de software será melhor aproveitada em obras onde há muita repetição, como em obras verticais (prédios, torres) e obras repetitivas (condomínios com diversos blocos ou casas padronizadas), e quanto maior o empreendimento, mais sensível vai ser o ganho de produtividade de forma a ser mais visível a compensação financeira.

Ainda, ao longo da trajetória de uso, a criação de bibliotecas próprias da empresa fazem que a cada empreendimento o ganho de produtividade vai ser maior quando em comparação à situação anterior ao uso do BIM.

As ferramentas de CAD ainda terão diversas utilizações pertinentes como o caso de pequenas obras ou projetos de menor complexidade, mas deixarão de ser a

principal ferramenta na elaboração e emissão de projetos na engenharia civil sendo sucedidas pelo BIM.

6 REFERÊNCIAS BIBLIOGRÁFICAS

ABNT, 2004, **ABNT NBR 5410: Instalações elétricas de baixa tensão**. 2 ed. Rio de Janeiro, ABNT – Associação Brasileira de Normas Técnicas.

ABNT, 1992, **ABNT NBR 5413: Iluminância de interiores**. Rio de Janeiro, ABNT – Associação Brasileira de Normas Técnicas.

ABNT, 1989, **ABNT NBR 5444: Símbolos gráficos para instalações** elétricas prediais. Rio de Janeiro, ABNT – Associação Brasileira de Normas Técnicas.

ABNT, 1998, **ABNT NBR 7200: Execução de revestimento de paredes e tetos de argamassas inorgânicas - Procedimento**. Rio de Janeiro, ABNT – Associação Brasileira de Normas Técnicas.

ABNT, 1996, **ABNT NBR 13753: Revestimento de piso interno ou** externo com placas cerâmicas e com utilização de argamassa colante -**Procedimento**. Rio de Janeiro, ABNT – Associação Brasileira de Normas Técnicas.

ABNT, 2013, **ABNT NBR ISO/CIE 8995-1: Iluminação de ambientes de trabalho Parte 1: Interior**. Rio de Janeiro, ABNT – Associação Brasileira de Normas Técnicas.

ANÔNIMO, 2014, **Manual de Transporte Vertical em Edifícios: Elevadores de Passageiros, Escadas Rolantes, Obra Civil e Cálculo de Tráfego.** Disponível em http://www.schindler.com/content/dam/web/br/PDFs/NI/manual-transporte-vertical.pdf> Acesso em 11 jan. 2015

```
HARTMANN, Timo, 2009, How to link and present a 4D model using
Navisworks, Disponível em
<http://www.utwente.nl/ctw/visico/Publications/TP/TP1.pdf> Acesso em: 14 fev. 2015
```

PINI, Editora, 2008, **Tabelas de Composição de Preços para Orçamentos.** 13 ed. São Paulo, Editora Pini.

Project Management Institute, 2013, A guide to the project management body of knowledge (PMBOK® guide). 5 ed. Pennsylvania, Project Management Institute, Inc.

http://www.ecat.lighting.philips.com.br/l/lampadas/41334/cat/ Acesso em 18 jan. 2015

http://bim.wikispaces.com/Microsoft+Project+Into+Navisworks Acesso em 14 fev. 2015

<http://equipedeobra.pini.com.br/construcao-reforma/24/passo-a-passo-

impermeabilizacao-de-banheiro-144236-1.aspx> Acesso em 18 jan. 2015

<http://www.sketchuptexture.com/p/textures.html> Acesso em 17 jan. 2015

<http://seek.autodesk.com/> Acesso em 21 jan. 2015

<http://www.polantis.com/> Acesso em 22 jan 2015

<http://library.smartbim.com/> Acesso em 22 jan. 2015

<http://bimbandit.com/> Acesso em 23 jan. 2015

<http://www.frankcollaboration.com/> Acesso em 23 jan.2015

<http://codebim.com/resources/history-of-building-information-modelling/>

Acesso em 02/03/2015

Leandro Sander Müller Escola Polit			
TCC - BIM na Construção Civil			
ANEXO I - Arquitetura Térreo			
	Escola Polite ão Civil Férreo		

Leandro Sander Müller	écnica UFRJ
TCC - BIM na Constru	02/03/2015
ANEXO II - Arquitetur	1:100

1 <u>1^o Andar</u> 1 1 : 100

Leandro Sander Müller	Escola Polite	écnica UFRJ
TCC - BIM na Constru	02/03/2015	
ANEXO III - Arquitetura - Pa	1:100	

Leandro Sander Müller	Escola Polit	écnica UFRJ		
TCC - BIM na Constru	TCC - BIM na Construção Civil			
ANEXO IV - Projeto Elé	trico Tipo	1 : 50		

					Cálculo Lumino	técnico			
Name	Level	Area	Perime ter	Índice Local	Fator de Utilização (Tabela)	lluminância (Tabela)	Fluxo Luminoso Total	Fluxo do Dispositivo de Iluminação	Número de Dispositivos de Iluminação
Suíte	1º Andar	13 m²	15.16 m	0.730355	0.44	150	4602	1850	2
Dispensa	1º Andar	2 m ²	5.38 m	0.245606	0.398	100	404.773869	1850	0
Serviço	1º Andar	4 m ²	8.52 m	0.38546	0.39	100	1026.666667	1850	1
Corredor	1º Andar	6 m²	14.30 m	0.322635	0.39	100	1442.307692	775	2
Banheiro Suíte	1º Andar	5 m²	8.97 m	0.444505	0.28	150	2602.767857	775	3
Banheiro Social	1º Andar	4 m²	7.69 m	0.389122	0.28	150	1953.160714	775	3
Quarto	1º Andar	14 m ²	15.25 m	0.732949	0.44	150	4644.238636	1850	3
Varanda	1º Andar	16 m ²	23.82 m	0.536147	0.39	100	3992.416667	1850	2
Sala	1º Andar	30 m²	22.21 m	1.125165	0.52	150	8788.759615	775	11
Cozinha	1º Andar	21 m²	19.21 m	0.875814	0.51	200	8044.039216	2500	3

Leandro	Sander	Müller

TCC - BIM na Construção Civil

ANEXO V - Cálculo Luminotécnico

Escola Politécnica UFRJ

				Electrical Circuit Sc	chedule				
Panel	Wire Size	Wire Type	Load Name	Load Classification	# of Ground Conductors	Apparent Load Phase A	Apparent Load Phase B	Apparent Load Phase C	Circuit Number
Painel de Distribuição da Unidade 1	1-#6, 1-#6, 1-#6	Cobre	Suíte e Banheiro	Other; Lighting; Receptacle	1	1977 VA	0 VA	0 VA	АЗ
Painel de Distribuição da Unidade 1	1-#10, 1-#10, 1-#10	Cobre	Serviço e Dispensa	Other; Lighting; Receptacle	1	0 VA	1654 VA	0 VA	B2
Painel de Distribuição da Unidade 1	1-#10, 1-#10, 1-#10	Cobre	Corredor e Banheiro	Other; Lighting; Receptacle	1	0 VA	1250 VA	0 VA	B1
Painel de Distribuição da Unidade 1	1-#10, 1-#10, 1-#10	Cobre	Quarto e Varanda	Other; Lighting; Receptacle	1	881 VA	0 VA	0 VA	A1
Painel de Distribuição da Unidade 1	1-#8, 1-#8, 1-#8	Cobre	Cozinha	Other; Lighting; Receptacle	1	0 VA	0 VA	1758 VA	C1
Painel de Distribuição da Unidade 1	1-#6, 1-#6, 1-#6	Cobre	Sala	Other; Lighting; Receptacle	1	1800 VA	0 VA	0 VA	A2
Painel de Distribuição da Unidade 1	2-#12, 1-#12, 1-#12	Cobre	Ar Condiciona do da Sala	Receptacle	1	0 VA	1500 VA	1500 VA	BC3
Painel de Distribuição da Unidade 1	2-#12, 1-#12, 1-#12	Cobre	Ar Condiciona do da Suíte	Receptacle	1	1250 VA	0 VA	1250 VA	C2A4
Painel de Distribuição da Unidade 1	2-#12, 1-#12, 1-#12	Cobre	Ar Condiciona do do Quarto	Receptacle	1	0 VA	1250 VA	1250 VA	BC4

Leandro Sander Mülle	er

TCC - BIM na Construção Civil

ANEXO VI - Especificação de Circuitos

Escola Politécnica UFRJ

Pain	nel:	Painel de I	Distribuição da Unidade 1		1º Andar			3 Fases		208 V/3-0 VA			
Load Name	Number of Poles	Circuit Number	Apparent Current		A		3		C	Apparent Current	Circuit Number	Number of Poles	Load Name
Quarto e Varanda	1	A1	7 A	881 VA	1800 VA					15 A	A2	1	Sala
Corredor e Banheiro	1	B1	10 A			1250 VA	1654 VA			14 A	B2	1	Serviço e Dispensa
Cozinha	1	C1	15 A					1758 VA	1250 VA		C2		Ar Condicionado
Suíte e Banheiro	1	A3	16 A	1977 VA	1250 VA					12 A	A4	- 2	da Suíte
Ar Condicionado		B3				1500 VA	1250 VA				B4		Ar Condicionado
da Sala	2	C3	14 A					1500 VA	1250 VA	12 A	C4	- 2	do Quarto

Leandro Sander Müller TCC - BIM na Constr ANEXO VII - Painel de Dis

	Escola Politécnica UFRJ					
rução Civil		02/03/2015				
sti	ribuição Tipo					

		Та	akeoff - Disposi	tivos de iluminaçã	o (1 unidade)		
Count	Unit Description	Туре	Lamp	Description	Manufacturer	Model	URL
3	Luminária Barra	Lâmpada Fluorescente TL-D 36W/54-765 1SL	TL-D 36W/54-76 5 1SL	Arano LED	Philips	BCS640 W15L125 1xLED24_830 LIN-PC	http://www.ecat.lighting.phil ips.co.uk/l/indoor-luminaire s/surface-mounted/arano-l ed-bcs640/54548/cat/
3	Luminária Quadrada	Lâmpada Compacta	Twister 27W WW E27 220-240V 1BC	DayZone	Philips	BBS567 1xLED35S/840 PC-MLO-C	http://www.ecat.lighting.phil ips.com/l/indoor-luminaires/ recessed/dayzone/21947/c at/
1	Luminária Quadrada	Lâmpada Compacta Tripla	Twister 27W WW E27 220-240V 1BC	DayZone	Philips	BBS567 1xLED35S/840 PC-MLO-C	http://www.ecat.lighting.phil ips.com/l/indoor-luminaires/ recessed/dayzone/21947/c at/
2	Luminária Simples	Lâmpada Compacta	Twister 27W WW E27 220-240V 1BC	DayZone	Philips	BBS567 1xLED35S/840 PC-MLO-C	http://www.ecat.lighting.phil ips.com/l/indoor-luminaires/ recessed/dayzone/21947/c at/
20	Luminária Spot	BBS498 1xDLED-3000 C	Brilliantline Dichroic 50W GU5.3 12V MR16 36D 1CT	LuxSpace Compact High Efficacy	Philips	BBS498 1xDLED-3000 C	http://www.ecat.lighting.phil ips.com/l/indoor-luminaires/ downlights/luxspace-comp act-high-efficacy/52878/cat/

Grand total

Leandro S	Sander	Müller
-----------	--------	--------

TCC - BIM na Construção Civil

ANEXO VIII - Takeoff de Iluminação

Escola Politécnica UFRJ

rução Civil e Iluminação

r							
	Takeoff - Tomadas (1 unidade)						
Count	t Unit Description Type Pane						
3	Tomada Simples Alta	220V	Painel de Distribuição da Unidade 1				
11	Tomada Simples Baixa	127V	Painel de Distribuição da Unidade 1				
10	Tomada Simples Meia Altura	127V	Painel de Distribuição da Unidade 1				

Grand total

	r	
Leandro Sander Müller	Escola Polit	écnica UFRJ
TCC - BIM na Constru	BIM na Construção Civil	
ANEXO IX - Takeoff de	Tomadas	

Concrete - Cast-in-Place Concrete - 35 MPa Concrete - Cast-in-Place Concrete - 35 MPa	Fundações Fundações Fundações Fundações Fundações	1.30 m ³ 1.30 m ³ 1.30 m ³ 1.30 m ³
Concrete - Cast-in-Place Concrete - 35 MPa Concrete - Cast-in-Place Concrete - 35 MPa	Fundações Fundações Fundações Fundações Fundações	1.30 m ³ 1.30 m ³ 1.30 m ³
Concrete - Cast-in-Place Concrete - 35 MPa Concrete - Cast-in-Place Concrete - 35 MPa Concrete - Cast-in-Place Concrete - 35 MPa Concrete - Cast-in-Place Concrete - 35 MPa	Fundações Fundações Fundações	1.30 m ³
Concrete - Cast-in-Place Concrete - 35 MPa Concrete - Cast-in-Place Concrete - 35 MPa Concrete - Cast-in-Place Concrete - 35 MPa	Fundações Fundações	1 .30 m ³
Concrete - Cast-in-Place Concrete - 35 MPa Concrete - Cast-in-Place Concrete - 35 MPa	Fundações	1 1 . 11 / 111
Concrete - Cast-in-Place Concrete - 35 MPa	Fundações	1 30 m ³
		1 30 m ³
Concrete - Cast-in-Place Concrete - 35 MPa	Fundações	1 30 m ³
Concrete - Cast-in-Place Concrete - 35 MPa	Fundações	1 30 m ³
Concrete - Cast-in-Place Concrete - 35 MPa	Fundações	1 30 m ³
Concrete - Cast-In-Place Concrete - 35 MPa	Fundações	1.30 m ³
Concrete - Cast-III-I lace Concrete - 35 MPa	Fundações	1.30 m ³
Concrete - Cast-III-I lace Concrete - 35 MPa	Fundações	1.30 m ³
Concrete - Cast-III-I lace Concrete - 35 MPa	Fundações	1.30 m ³
Concrete - Cast-III-I lace Concrete - 35 MPa	Fundações	1.30 m ³
Concrete - Cast-in-Place Concrete - 35 MPa	Fundações	1.30 m ³
Concrete - Cast-III-I lace Concrete - 35 MPa	Fundações	1.30 m ³
Concrete - Cast-III-I lace Concrete - 35 MPa	Fundações	1.30 m ³
Concrete - Cast-III-I lace Concrete - 35 MPa	Fundações	1.30 m ³
Concrete - Cast-III-Flace Concrete - 35 MPa	Fundações	1.30 m ³
Concrete - Cast-III-I lace Concrete - 35 MPa	Fundações	1.30 m ³
Concrete - Cast-III-I lace Concrete - 35 MPa	Fundações	5 00 m ³
Concrete - Cast-in-Place Concrete - 35 MPa	Fundações	2 51 m ³
Concrete - Cast-in-Place Concrete - 35 MPa	Fundações	2.51 m ³
Concrete - Cast-in-Place Concrete - 35 MPa	Fundações	2.51 m ³
Concrete - Cast-in-Place Concrete - 35 MPa	Fundações	1 43 m ³
Concrete - Cast-in-Place Concrete - 35 MPa	Fundações	1 43 m ³
Concrete - Cast-in-Place Concrete - 35 MPa	Fundações	0.97 m ³
Concrete - Cast-in-Place Concrete - 35 MPa	Fundações	0.97 m ³
Concrete - Cast-in-Place Concrete - 35 MPa	Fundações	0.97 m ³
Concrete - Cast-in-Place Concrete - 35 MPa	Fundações	0.97 m ³
Concrete - Cast-in-Place Concrete - 35 MPa	Fundações	1 30 m ³
Concrete - Cast-in-Place Concrete - 35 MPa	Fundações	1 30 m ³
Concrete - Cast-in-Place Concrete - 35 MPa	Fundações	0.87 m ³
Concrete - Cast-in-Place Concrete - 35 MPa	Fundações	0.87 m ³
Leandro Sander Müller E	Escola Polit	écnica UFF

ANEXO X - Takeoff Conc. de Fundações

	Takeoff - Janelas											
Count	Window Description	Туре	Width	Height	Description	Construction Type	Manufacturer	Model	URL	Window Type Comments		
20	M_Fixed	0406 x 0610mm	0.41 m	0.61 m						10		
2	M_Window-Square Opening	1220 x 1372mm	0.00 m	0.00 m						48		
22	Sliding with Trim	1372 x 1013mm	1.37 m	0.99 m						36		
22	Sliding with Trim	1372 x 1220mm	1.37 m	1.22 m						35		
20	Sliding with Trim	1830 x 1220mm	1.52 m	1.22 m						33		
24	Transom	0610 x 0457mm	0.61 m	0.46 m						24		

Grand total

Leandro Sander Müller	Escola
TCC - BIM na Constru	ção Civil

ANEXO XI - Takeoff Janelas

Escola Politécnica UFRJ

	Takeoff - Portas												
Count	Door Description	Туре	Width	Height	Thickness	Fire Rating	Description	Construction Type	Manufactur er	Model	URL	Door Type	Comments
22	Sliding Door - 3 Panel (AUS)	Type 1	2.15 m	2.14 m	0.04 m							23	
60	Porta Simples de Correr	80x210cm	0.90 m	2.15 m				300				47	
87	Otoènéjednok øídlové_Poblo -ka	700x2100	0.70 m	2.10 m			Dveře jednokříidlé					57	
40	Otoènéjednok øídlové_Poblo -ka	900x2100	0.90 m	2.10 m			Dveře jednokříidlé					58	
14	Door-Elevator_2- Speed_SMARTBI M	Door-Elevator _2-Speed_SM ARTBIM	1.07 m	2.44 m	0.03 m				SMARTBIM			62	
1	Door - Double Glass - Framed (AUS)	Door - Double Glass - Framed (AUS)	2.57 m	2.08 m								63	
2	Double-Glass 1	1730 x 2032mm	1.73 m	2.03 m	0.05 m							66	
8	Porta Corta Fogo	Metal Frame/Metal Door	1.02 m	2.18 m	0.04 m				Hager Companies			70	

Grand total

∟eandro	Sander	Müller
---------	--------	--------

TCC - BIM na Construção Civil

ANEXO XII - Takeoff Portas

Escola Politécnica UFRJ

Leandro Sander Müller Escola Politécnica UFRJ

TCC - BIM na Construção Civil ANEXO XIX - Render. Sala e Suíte

Leandro	Sander	Müller

TCC - BIM na Construção Civil

ANEXO XX - Renderização Cozinha

Escola Politécnica UFRJ

rução Civil Ição Cozinha

Id	Nome da tarefa		Duração	Início	Término	015 Eev	Tri 2/2015 Mar Abr Maio Iu	Tri 3/2015	Tri 4/2015 Tri 1/202
1	EDIFÍCIO VERIT		436 d	02/03/15	24/08/16	rev		n Jui Ago Set	
2	INÍCIO		0 d	02/03/15	02/03/15		• 02/03		
3	ATIVIDADES INICIAIS		85 d	02/03/15	15/06/15		I		
4	Execução de serviço	s preliminares	15 d	02/03/15	19/03/15				
5	Obtenção de Licenç	as	30 d	19/03/15	27/04/15				
6	Montagem do Canto	eiro	40 d	27/04/15	15/06/15		•	٦	
7	FUNDAÇÕES		55 d	16/06/15	21/08/15		r	1	
8	Execução de estudo	s geotécnicos finais pré-obra	4 d	16/06/15	19/06/15		ì	K	
9	Movimentos de Ter	ra	3 d	19/06/15	24/06/15			Ϊ,	
10	Instalação de gabari	to e materialização dos eixos de referência	8 d	24/06/15	03/07/15			i ≚ _	
11	Execução das sapata	as e cintas	40 d	03/07/15	21/08/15				
12	SUPERESTRUTURA		95 d	21/08/15	18/12/15			r	1
13	Execução do piso do	o andar térreo	5 d	21/08/15	28/08/15			*	
14	Execução da estrutu	ira do PUC	10 d	01/09/15	11/09/15			*	
15	Execução das estrut	uras do 1º Andar	10 d	15/09/15	28/09/15			*	
16	Execução das estrut	uras do 2º andar	10 d	30/09/15	13/10/15				
17	Execução das estrut	uras do 3º andar	10 d	15/10/15	27/10/15				
18	Execução das estrut	uras do 4º andar	10 d	29/10/15	11/11/15				
19	Execução das estrut	uras do 5º andar	10 d	13/11/15	26/11/15				
20	Execução das estrut	uras do terraço	10 d	30/11/15	10/12/15				
21	Execução das estrut	uras da sala de máquinas	5 d	11/12/15	18/12/15				
22	ALVENARIAS	· · · · · · · · · · · · · · · · · · ·	167 d	02/11/15	26/05/16				
23	Elevação		89 d	02/11/15	19/02/16				
24	Execução das alve	enarias do pavimento térreo	12 d	05/02/16	19/02/16				
25	Execução das alve	enarias do PUC	17 d	02/11/15	23/11/15				
26	Execução das alve	enarias do 1º andar	17 d	17/11/15	08/12/15				
27	Execução das alve	enarias do 2º andar	17 d	01/12/15	22/12/15				
28	Execução das alve	enarias do 3º andar	17 d	16/12/15	06/01/16				
29	Execução das alve	enarias do 4º andar	17 d	31/12/15	21/01/16				
30	Execução das alve	enarias do 5º andar	17 d	14/01/16	04/02/16				
31	Execução das alve	enarias do terraço	5 d	22/01/16	28/01/16				
32	Aperto		8 d	17/05/16	26/05/16				
33	Execução do apei	to das alvenarias do pavimento térreo	1 d	17/05/16	18/05/16				
34	Execução do apei	to das alvenarias do PUV	1 d	18/05/16	19/05/16				
35	Execução do apei	to das alvenarias do 1º andar	1 d	19/05/16	20/05/16				
		Tarefa	Tarefa Inativa			Ac	cúmulo de Resumo Manı	ual	Marco externo
Ducies	o Edifício Varit rece	Divisão	Marco Inativo	\diamond		Re	esumo Manual		Data limite
Projet Data:	0. Edificio verit.mpp 25/02/15	Marco 🔶	Resumo Inativo		[Sc	omente início	E	Andamento
Data.	<i>23,02,</i> 13	Resumo	Tarefa Manual			Sc	omente término	Э	Progresso manual
		Resumo do projeto	Somente duração			Ta	irefas externas		

Id	Nome da tarefa			Duração	Início	Término	2015 Eev	Tri 2/2015	Tri 3/2015	Tri 4/201	.5	Tr	i 1/20:
36	Execução do aper	to das alvenarias do 2º	andar	1 d	20/05/16	23/05/16	rev		Jui Ago Set			<u>-</u> Z J	
37	Execução do aper	to das alvenarias do 3º	andar	1 d	23/05/16	24/05/16							
38	Execução do aper	to das alvenarias do 4º	andar	1 d	24/05/16	25/05/16							
39	Execução do aper	to das alvenarias do 5º	andar	1 d	25/05/16	26/05/16							
40	Execução do aper	to das alvenarias do ter	raço	1 d	26/05/16	26/05/16							
41	SISTEMAS PREDIAIS		-	216 d	02/11/15	27/07/16				-			
42	Água			106 d	02/11/15	11/03/16				-			
43	Comuns			81 d	02/11/15	10/02/16				- F-			_
44	Prumada e inst	alação da caixa d'água		10 d	28/01/16	10/02/16							
45	Execução dos b	arriletes		5 d	28/01/16	04/02/16							
46	Execução das t	ubulações verticais de ir	ncêndio	5 d	28/01/16	04/02/16							
47	Execução dos t	ubulações verticais de á	guas pluviais	5 d	28/01/16	04/02/16							
48	Execução dos t	ubulações verticais de e	sgoto	5 d	28/01/16	04/02/16							
49	Execução dos r	amais do pavimento tér	reo	4 d	05/02/16	10/02/16							
50	Execução dos r	amais do PUC		7 d	02/11/15	10/11/15					++++		
51	Execução do ra	mal do terraço		4 d	22/01/16	27/01/16							
52	Unidades			58 d	17/11/15	27/01/16					P		-
53	Execução dos r	amais do 1º pavimento		10 d	17/11/15	30/11/15							
54	Execução dos r	amais do 2º pavimento		10 d	01/12/15	14/12/15							
55	Execução dos r	amais do 3º pavimento		10 d	16/12/15	29/12/15							
56	Execução dos r	amais do 4º pavimento		10 d	31/12/15	13/01/16							
57	Execução dos r	amais do 5º pavimento		10 d	14/01/16	27/01/16							
58	Incêndio			77 d	13/11/15	17/02/16					╏┿┿┿┿		
59	Execução do si	stema de incêndio do pa	vimento térreo	5 d	11/02/16	17/02/16							
60	Execução do si	stema de incêndio do Pl	JC	5 d	13/11/15	19/11/15							
61	Execução do si	stema de incêndio do 1º	pavimento	5 d	30/11/15	04/12/15							
62	Execução do si	stema de incêndio do 2º	pavimento	5 d	14/12/15	21/12/15							
63	Execução do si	stema de incêndio do 3º	pavimento	5 d	29/12/15	04/01/16							
64	Execução do si	stema de incêndio do 4º	pavimento	5 d	13/01/16	19/01/16							
65	Execução do si	stema de incêndio do 5º	pavimento	5 d	27/01/16	03/02/16							
66	Esgoto			99 d	10/11/15	11/03/16				1	++++++++		
67	Execução do si	stema de esgoto do pav	imento térreo	5 d	10/02/16	16/02/16							
68	Execução do si	stema de esgoto do PUC	2	7 d	10/11/15	18/11/15				i			
69	Execução do sis	stema de esgoto do 1º a	ndar	10 d	30/11/15	10/12/15							
70	Execução do si	stema de esgoto do 2º a	ndar	10 d	14/12/15	25/12/15							
		Tarefa		Tarefa Inativa			Aci	úmulo de Resumo Manua		Marc	o exterr	10	
		Divisão		Marco Inativo	•		Reg	sumo Manual		Data	limite	-	
Projet	o: Edifício Verit.mpp	Marco	•	Resumo Inativo	Ň			mente início	Г	. Data	mento		
Data: 2	25/02/15	Pesumo	·					mente micio	-	Drog		أحيرهم	
					TERRE		- SOI		-	Frogr	C220 1116	anudi	
		kesumo ao projeto	u – I	Somente duração			Iar	eras externas					

Resumo do projeto

Id	Nome da tarefa			Duração	Início	Término	2015 Eev	Tri 2/2015 Mar Abr Maio Jun	Tri 3/2015	Tri 4/201	15 Iov Г		ri 1/2
71	Execução do si	stema de esgoto do 3º anda	ar	10 d	29/12/15	11/01/16							
72	Execução do si	stema de esgoto do 4º anda	ar	10 d	13/01/16	25/01/16							
73	Execução do si	stema de esgoto do 5º anda	ar	10 d	27/01/16	09/02/16							
74	Execução das c	caixas de inspeção, caixa sép	otica, caixa de goro	dui20 d	17/02/16	11/03/16							
75	Águas Pluviais			22 d	28/01/16	25/02/16							P
76	Execução do si	stema de captação de água	s pluviais	10 d	28/01/16	10/02/16							
77	Execução das c	caixas de areia		7 d	17/02/16	25/02/16							
78	Eletricidade/Dados			216 d	02/11/15	27/07/16				-		┝━┿╾┿╸	
79	Fase 1 - Instalaçã	io de eletrodutos e cabos/fi	ios	97 d	02/11/15	01/03/16							
80	Execução do si	stema elétrico - Fase 1 / Téi	rreo	20 d	05/02/16	01/03/16							4
81	Execução do si	stema elétrico - Fase 1 / PU	С	15 d	02/11/15	19/11/15					╺┥┤╿╵		
82	Execução do si	stema elétrico - Fase 1 / 1º	Andar	15 d	17/11/15	04/12/15				ų	▶₩₩		
83	Execução do si	stema elétrico - Fase 1 / 2º	Andar	15 d	01/12/15	21/12/15							
84	Execução do si	stema elétrico - Fase 1 / 3º	Andar	15 d	16/12/15	04/01/16					- 4		
85	Execução do si	stema elétrico - Fase 1 / 4º	Andar	15 d	31/12/15	19/01/16						🕨	
86	Execução do si	stema elétrico - Fase 1 / 5º	Andar	15 d	14/01/16	03/02/16							
87	Execução do si	stema elétrico - Fase 1 / Tei	rraço	5 d	22/01/16	28/01/16							
88	Fase 2 - Quadros	de distribução e Ligações		87 d	19/11/15	08/03/16					1		
89	Execução do si	stema elétrico - Fase 2 / Téi	rreo	5 d	01/03/16	08/03/16							
90	Execução do si	stema elétrico - Fase 2 / PU	С	3 d	19/11/15	24/11/15					I		
91	Execução do si	stema elétrico - Fase 2 / 1º	Andar	3 d	04/12/15	09/12/15						í	
92	Execução do si	stema elétrico - Fase 2 / 2º	Andar	3 d	21/12/15	23/12/15							
93	Execução do si	stema elétrico - Fase 2 / 3º	Andar	3 d	04/01/16	07/01/16							
94	Execução do si	stema elétrico - Fase 2 / 4º	Andar	3 d	19/01/16	22/01/16							F
95	Execução do si	stema elétrico - Fase 2 / 5º	Andar	3 d	03/02/16	05/02/16							
96	Execução do si	stema elétrico - Fase 2 / Tei	rraço	1 d	28/01/16	29/01/16							P
97	Fase 3 - Equipam	entos		34 d	15/06/16	27/07/16							
98	Execução do s	istema elétrico - Fase 3 / Té	rreo	5 d	15/06/16	21/06/16							
99	Execução do s	istema elétrico - Fase 3 / PL	JC	3 d	22/06/16	27/06/16							
100	Execução do s	istema elétrico - Fase 3 / 1º	Andar	3 d	19/07/16	21/07/16							
101	Execução do s	istema elétrico - Fase 3 / 2º	Andar	3 d	20/07/16	22/07/16							
102	Execução do s	istema elétrico - Fase 3 / 3º	Andar	3 d	21/07/16	25/07/16							
103	Execução do s	istema elétrico - Fase 3 / 4º	Andar	3 d	22/07/16	26/07/16							
104	Execução do s	istema elétrico - Fase 3 / 5º	Andar	3 d	22/07/16	27/07/16							
105	Execução do s	istema elétrico - Fase 3 / Te	rraço	2 d	28/06/16	29/06/16							
		Tarefa		Tarefa Inativa			A	cúmulo de Resumo Manua	al	Marc	o exter	no	
		Divisão	I	Marco Inativo	\diamond		R	esumo Manual		D ata	limite		
Projet	o: Edifício Verit.mpp	Marco)	Resumo Inativo			S	omente início	C	Anda	imento)	
Data:	23/02/15	Resumo		Tarefa Manual			S	omente término	Э	Proar	resso n	nanual	
										- 9			

Somente duração

Tarefas externas

Id	Nome da tarefa		Duração	Início	Término	2015	Tri 2/2015	Tri 3/2015	Tri 4/2015	Tri 1/20
106	Gás		23 d	19/02/16	21/03/16	Fev	Mar Abr Maio Jun	Jui Ago Set	Out Nov	Dez Jan I
107	Execução do siste	ema de distribuição de gás - PUC	3 d	19/02/16	24/02/16					
108	Execução do siste	ema de distribuição de gás - 1º an	dar 4 d	24/02/16	29/02/16					
109	Execução do siste	ema de distribuição de gás - 2º an	dar 4 d	29/02/16	04/03/16					
110	Execução do siste	ema de distribuição de gás - 3º an	dar 4 d	04/03/16	09/03/16					
111	Execução do siste	ema de distribuição de gás - 4º an	dar 4 d	10/03/16	15/03/16					
112	Execução do siste	ema de distribuição de gás - 5º an	dar 4 d	15/03/16	21/03/16					
113	REVESTIMENTO		209 d	23/11/15	09/08/16				F	
114	Impermeabilização		73 d	23/11/15	22/02/16				F	
115	Impermeabilizaçã	ão do pavimento térreo	1 d	19/02/16	22/02/16					
116	Impermeabilizaçã	ăo do PUC	3 d	23/11/15	26/11/15				i i	
117	Impermeabilizaçã	ăo do 1º pavimento	3 d	08/12/15	10/12/15					Γ Γ
118	Impermeabilizaçã	ăo do 2º pavimento	3 d	23/12/15	25/12/15					K III
119	Impermeabilizaçã	ăo do 3º pavimento	3 d	06/01/16	11/01/16					
120	Impermeabilizaçã	ăo do 4º pavimento	3 d	21/01/16	25/01/16					
121	Impermeabilizaçã	ăo do 5º pavimento	3 d	05/02/16	09/02/16					
122	Impermeabilizaçã	ăo do terraço	5 d	28/01/16	04/02/16					
123	Revestimentos Hor	izontais	173 d	26/11/15	29/06/16				I	
124	Contra piso		75 d	26/11/15	26/02/16				ľ	
125	Execução do co	ontra piso do pavimento térreo	5 d	22/02/16	26/02/16					
126	Execução do co	ontra piso do PUC	9 d	26/11/15	08/12/15				ì	
127	Execução do co	ontra piso do 1º pavimento	9 d	11/12/15	22/12/15					
128	Execução do co	ontra piso do 2º pavimento	9 d	25/12/15	06/01/16					
129	Execução do co	ontra piso do 3º pavimento	9 d	11/01/16	21/01/16					—
130	Execução do co	ontra piso do 4º pavimento	9 d	26/01/16	04/02/16					
131	Execução do co	ontra piso do 5º pavimento	9 d	09/02/16	19/02/16					
132	Execução do co	ontra piso do terraço	5 d	04/02/16	10/02/16					
133	Acabamentos		28 d	25/05/16	29/06/16					
134	Execução dos a	acabamentos do pavimento térre	o 9 d	25/05/16	06/06/16					
135	Execução dos a	acabamentos do PUC	10 d	27/05/16	09/06/16					
136	Execução dos a	acabamentos do 1º pavimento	11 d	09/06/16	23/06/16					
137	Execução dos a	acabamentos do 2º pavimento	11 d	10/06/16	24/06/16					
138	Execução dos a	acabamentos do 3º pavimento	11 d	13/06/16	27/06/16					
139	Execução dos a	acabamentos do 4º pavimento	11 d	14/06/16	28/06/16					
140	Execução dos a	acabamentos do 5º pavimento	11 d	15/06/16	29/06/16					
		Tarefa	Tarefa Inativa			A	cúmulo de Resumo Manua	ı	Marco ex	xterno
		Divisão	Marco Inativo	\diamond		Re	esumo Manual		Data lim	ite
Projeto	p: Edifício Verit.mpp	Marco	Resumo Inativo	[Sc	omente início	C	Andame	nto
Data: 2	25/02/15	Resumo	Tarefa Manual			S	omente término		Progress	o manual

Resumo

Resumo do projeto

Id	Nome da tarefa			Duração	Início	Término	2015	Tri 2/2015	Tri 3/2015	Tri 4/2015	Tri 1/2
141	Execução dos a	acabamentos do terraço		6 d	14/06/16	21/06/16	rev		Jui Ago Sei	. Out Nov Dez	
142	Revestimentos vert	icais		66 d	18/05/16	09/08/16					
143	Revestimentos a	rgamassados		51 d	18/05/16	21/07/16					
144	Execução de re	evestimentos argamassados	do pavimento téri	re 5 d	18/05/16	25/05/16					
145	Execução de re	evestimentos argamassados	do PUC	7 d	19/05/16	27/05/16					
146	Execução de re	evestimentos argamassados	do 1º pavimento	16 d	20/05/16	09/06/16					
147	Execução de re	evestimentos argamassados	do 2º pavimento	16 d	23/05/16	10/06/16					
148	Execução de re	evestimentos argamassados	do 3º pavimento	16 d	24/05/16	13/06/16					
149	Execução de re	evestimentos argamassados	do 4º pavimento	16 d	25/05/16	14/06/16					
150	Execução de re	evestimentos argamassados	do 5º pavimento	16 d	26/05/16	15/06/16					
151	Execução de re	evestimentos argamassados	do terraço	14 d	27/05/16	14/06/16					
152	Execução de re	evestimento argamassado e>	kterno	30 d	14/06/16	21/07/16					
153	Acabamento			52 d	06/06/16	09/08/16					
154	Execução dos a	acabamentos do pavimento	térreo	8 d	06/06/16	15/06/16					
155	Execução dos a	acabamentos do PUC		10 d	09/06/16	22/06/16					
156	Execução dos a	acabamentos do 1º pavimen	to	20 d	23/06/16	19/07/16					
157	Execução dos a	acabamentos do 2º pavimen	to	20 d	24/06/16	20/07/16					
158	Execução dos a	acabamentos do 3º pavimen	to	20 d	27/06/16	21/07/16					
159	Execução dos a	acabamentos do 4º pavimen	to	20 d	28/06/16	21/07/16					
160	Execução dos a	acabamentos do 5º pavimen	to	20 d	29/06/16	22/07/16					
161	Execução dos a	acabamentos do terraço		5 d	21/06/16	28/06/16					
162	Execução dos a	acabamentos externos		15 d	21/07/16	09/08/16					
163	ESQUADRIAS			36 d	15/06/16	29/07/16					
164	Instalação das esqua	adrias do pavimento térreo		4 d	15/06/16	20/06/16					
165	Instalação das esqua	adrias do PUC		3 d	22/06/16	27/06/16					
166	Instalação das esqua	adrias do 1º pavimento		5 d	19/07/16	25/07/16					
167	Instalação das esqua	adrias do 2º pavimento		5 d	20/07/16	26/07/16					
168	Instalação das esqua	adrias do 3º pavimento		5 d	21/07/16	27/07/16					
169	Instalação das esqua	adrias do 4º pavimento		5 d	22/07/16	28/07/16					
170	Instalação das esqua	adrias do 5º pavimento		5 d	22/07/16	29/07/16					
171	Instalação das esqua	adrias do terraço		1 d	28/06/16	29/06/16					
172	LOUÇAS E METAIS			34 d	15/06/16	27/07/16					
173	Instalação das louça	is e metais do pavimento téi	rreo	1 d	15/06/16	16/06/16					
174	Instalação das louça	is e metais do PUC		2 d	22/06/16	24/06/16					
175	Instalação das louça	is e metais do 1º pavimento		3 d	19/07/16	21/07/16					
		Tarefa	Т	arefa Inativa			Ac	cúmulo de Resumo Manual		Marco externo	
Droit	o: Edifício Vorit roma	Divisão	N	/larco Inativo	\diamond		Re	esumo Manual		Data limite	
Data:	25/02/15	Marco 🔶	, R	lesumo Inativo			1 Sc	omente início	C	Andamento	

Tarefa Manual

Somente duração

111

Somente término

Tarefas externas

Progresso manual

Id	Nome da tarefa	Duração	Início	Término	2015 Fev	Ma	Tri 2/2015	Tri 3/	2015	Tri 4/2015	Dez	Tri 1/20
176	Instalação das louças e metais do 2º pavimento	3 d	20/07/16	22/07/16		IVIC		Jul			DCZ	Jan
177	Instalação das louças e metais do 3º pavimento	3 d	21/07/16	25/07/16								
178	Instalação das louças e metais do 4º pavimento	3 d	22/07/16	26/07/16								
179	Instalação das louças e metais do 5º pavimento	3 d	22/07/16	27/07/16								
180	Instalação das louças e metais do terraço	1 d	28/06/16	29/06/16								
181	FINALIZAÇÃO	182 d	12/01/16	24/08/16								
182	Instalação de elevadores	20 d	12/01/16	04/02/16								
183	Instalação de equipamentos	20 d	17/02/16	14/03/16								
184	Execução e instalação da sinalização do edifício	7 d	14/03/16	22/03/16								
185	Paisagismo	10 d	22/03/16	04/04/16								
186	Instalação do mobiliário das áreas comuns e PUC	8 d	21/07/16	01/08/16								
187	Limpeza e check da área interna	20 d	01/08/16	24/08/16								
188	Limpeza e check da área externa	20 d	01/08/16	24/08/16								
189	TÉRMINO	0 d	24/08/16	24/08/16								

Projeto: Edifício Verit.mpp Data: 25/02/15	Tarefa		Tarefa Inativa		Acúmulo de Resumo Manual		Marco externo
	Divisão		Marco Inativo	\diamond	Resumo Manual	I1	Data limite
	Marco	♦	Resumo Inativo	0	Somente início	E	Andamento
	Resumo	1	Tarefa Manual		Somente término	Э	Progresso manual
	Resumo do projeto	[]	Somente duração		Tarefas externas		

ANEXO XXII: TIMELAPSE DO PLANEJAMENTO 4D GERADO NO NAVISWORKS

15/10/2015

29/10/2015

05/11/2015

12/11/2015

19/11/2015

26/11/2015

03/12/2015

10/12/2015

24/12/2015

31/12/2015

07/01/2016

14/01/2016

21/01/2016

28/01/2016

04/02/2016

18/02/2016

24/02/2016

22/05/2016

01/06/2015

08/06/2016

15/06/2015

22/06/2016

29/06/2015

20/07/2015

27/07/2016

24/08/2016

Detalhe do time lapse:

